Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-861-2019
https://doi.org/10.5194/acp-19-861-2019
Research article
 | 
23 Jan 2019
Research article |  | 23 Jan 2019

Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States

Xuan Ma, Fei Xie, Jianping Li, Xinlong Zheng, Wenshou Tian, Ruiqiang Ding, Cheng Sun, and Jiankai Zhang

Related authors

Effects of Ozone-Climate Interactions on the Temperature Variation in the Arctic Stratosphere
Siyi Zhao, Jiankai Zhang, Chongyang Zhang, and Zhe Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2740,https://doi.org/10.5194/egusphere-2024-2740, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The Joint Effect of Mid-latitude Winds and the Westerly Quasi-Biennial Oscillation Phase on the Antarctic Stratospheric Polar Vortex and Ozone
Zhe Wang, Jiankai Zhang, and Siyi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2669,https://doi.org/10.5194/egusphere-2024-2669, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022,https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: a response to sea surface temperature trends
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600, https://doi.org/10.5194/acp-22-1575-2022,https://doi.org/10.5194/acp-22-1575-2022, 2022
Short summary
Estimation of isentropic stirring and mixing and their diagnosis for the stratospheric polar vortex
Zhiting Wang, Nils Hase, Wenshou Tian, and Mengchu Tao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1096,https://doi.org/10.5194/acp-2021-1096, 2022
Publication in ACP not foreseen
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Comment on “An approach to sulfate geoengineering with surface emissions of carbonyl sulfide” by Quaglia et al. (2022)
Marc von Hobe, Christoph Brühl, Sinikka T. Lennartz, Mary E. Whelan, and Aleya Kaushik
Atmos. Chem. Phys., 23, 6591–6598, https://doi.org/10.5194/acp-23-6591-2023,https://doi.org/10.5194/acp-23-6591-2023, 2023
Short summary
The climate impact of hydrogen-powered hypersonic transport
Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe
Atmos. Chem. Phys., 22, 14323–14354, https://doi.org/10.5194/acp-22-14323-2022,https://doi.org/10.5194/acp-22-14323-2022, 2022
Short summary
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020,https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019,https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Key drivers of ozone change and its radiative forcing over the 21st century
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018,https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003. 
Archer, C. L. and Caldeira, K.: Historical trends in the jet streams, Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614, 2008. 
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. 
Barlow, M., Nigam, S., and Berbery, E. H.: ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow, J. Climate, 14, 2105–2128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2, 2001. 
Bitz, C. M. and Polvani, L. M.: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model, Geophys. Res. Lett., 39, L20705, https://doi.org/10.1029/2012GL053393, 2012. 
Download
Altmetrics
Final-revised paper
Preprint