Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-861-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-861-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States
Xuan Ma
College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
Fei Xie
CORRESPONDING AUTHOR
College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
Jianping Li
College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National
Laboratory for Marine Science and Technology, Qingdao, China
Xinlong Zheng
College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
Wenshou Tian
College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Ruiqiang Ding
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Cheng Sun
College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
Jiankai Zhang
College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Related authors
No articles found.
Siyi Zhao, Jiankai Zhang, Chongyang Zhang, and Zhe Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2740, https://doi.org/10.5194/egusphere-2024-2740, 2024
Short summary
Short summary
By isolating the ozone-cycle coupling process, the study discusses how ozone-climate interaction affects the long-term change of the Arctic stratospheric temperature (AST). From 1980 to 1999, ozone-climate interactions increased AST by promoting upwave propagation and Brewer-Dobson circulation in early winter and reduced AST by reducing ozone shortwave heating in late winter and spring. Our results highlight the effect of ozone-climate interactions on intra-seasonal reversals of AST trends.
Zhe Wang, Jiankai Zhang, and Siyi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2669, https://doi.org/10.5194/egusphere-2024-2669, 2024
Short summary
Short summary
Mid-latitude wind in upper stratosphere is indispensable in establishing quasi-biennial oscillation (QBO)-vortex coupling in Southern hemisphere. During the Westerly QBO, positive zonal wind anomalies at 20° S−40° S in upper stratosphere in July, named as positive extratropical mode, lead to a stronger polar vortex in November, with a correlation reaching 0.75. This suggests that Antarctic stratospheric polar vortex and ozone concentration in spring can be predicted up to five months in advance.
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022, https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600, https://doi.org/10.5194/acp-22-1575-2022, https://doi.org/10.5194/acp-22-1575-2022, 2022
Short summary
Short summary
Antarctic stratospheric wave activities in September have been weakening significantly since the 2000s. Further analysis supports the finding that sea surface temperature (SST) trends over 20° N–70° S lead to the weakening of stratospheric wave activities, while the response of stratospheric wave activities to ozone recovery is weak. Thus, the SST trend should be taken into consideration when exploring the mechanism for the climate transition in the southern hemispheric stratosphere around 2000.
Zhiting Wang, Nils Hase, Wenshou Tian, and Mengchu Tao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1096, https://doi.org/10.5194/acp-2021-1096, 2022
Publication in ACP not foreseen
Short summary
Short summary
The distribution of trace gases in the stratosphere impacts the thermal and dynamical structures of the atmosphere. The spatial structure of the trace gases is determined by the residual circulation and stirring and mixing processes. Currently the stirring is purely constrained due to lack of observation. Here we develop a diagnosis for stirring mainly based on the trace gas contour. The method is applied for estimating stirring and mixing effects on methane concentration in a polar vortex.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Juan Feng, Jianlei Zhu, Jianping Li, and Hong Liao
Atmos. Chem. Phys., 20, 9883–9893, https://doi.org/10.5194/acp-20-9883-2020, https://doi.org/10.5194/acp-20-9883-2020, 2020
Short summary
Short summary
This paper explores the month-to-month variability of aerosol concentrations (ACs) over China. The AC variability is dominated by the monopole mode and the meridional dipole mode. The associated dynamic and thermal impacts of the climate systems are examined to explain their contributions to the formation of the two modes. The result suggests the variations are originating from the tropical Pacific, and extratropical atmospheric systems contribute to the dominant variabilities of ACs over China.
Xiadong An, Lifang Sheng, Qian Liu, Chun Li, Yang Gao, and Jianping Li
Atmos. Chem. Phys., 20, 4667–4680, https://doi.org/10.5194/acp-20-4667-2020, https://doi.org/10.5194/acp-20-4667-2020, 2020
Short summary
Short summary
Severe haze occurred in the North China Plain (NCP) in November to December 2015. We found that the two Rossby waveguides within the westerly jet originating from the Mediterranean were responsible for the haze formation in the NCP. The weak East Asia winter monsoon and anomalous circulation with ascending motion over southern China and descending motion over the NCP related to the two Rossby waveguides, which modulated haze accumulation and favored the maintenance of severe haze.
Juan Feng, Jianping Li, Hong Liao, and Jianlei Zhu
Atmos. Chem. Phys., 19, 10787–10800, https://doi.org/10.5194/acp-19-10787-2019, https://doi.org/10.5194/acp-19-10787-2019, 2019
Short summary
Short summary
Background climate can affect the aerosol concentration (AC). It is found that when negative NAO overlaps El Niño, the anomalous circulations are not favorable for the transportation of aerosol, resulting in enhanced AC over eastern China. By contrast, a sole negative NAO event is linked with increased AC over central China. The results suggest that both the extratropical and tropical climate systems play an important role in impacting the AC over China.
Jiali Luo, Laura L. Pan, Shawn B. Honomichl, John W. Bergman, William J. Randel, Gene Francis, Cathy Clerbaux, Maya George, Xiong Liu, and Wenshou Tian
Atmos. Chem. Phys., 18, 12511–12530, https://doi.org/10.5194/acp-18-12511-2018, https://doi.org/10.5194/acp-18-12511-2018, 2018
Short summary
Short summary
We analyze upper tropospheric CO and O3 using satellite data from limb-viewing (MLS) and nadir-viewing (IASI and OMI) sensors, together with dynamical variables, to examine how the two types of data complement each other in representing the chemical variability associated with the day-to-day dynamical variability in the Asian summer monsoon anticyclone. The results provide new observational evidence of eddy shedding in upper tropospheric CO distribution.
Wenshou Tian, Yuanpu Li, Fei Xie, Jiankai Zhang, Martyn P. Chipperfield, Wuhu Feng, Yongyun Hu, Sen Zhao, Xin Zhou, Yun Yang, and Xuan Ma
Atmos. Chem. Phys., 17, 6705–6722, https://doi.org/10.5194/acp-17-6705-2017, https://doi.org/10.5194/acp-17-6705-2017, 2017
Short summary
Short summary
Although the principal mechanisms responsible for the formation of the Antarctic ozone hole are well understood, the factors or processes that generate interannual variations in ozone levels in the southern high-latitude stratosphere remain under debate. This study finds that the SST variations across the East Asian marginal seas (5° S–35° N, 100–140° E) could modulate the southern high-latitude stratospheric ozone interannual changes.
Jin Feng, Hong Liao, and Jianping Li
Atmos. Chem. Phys., 16, 4927–4943, https://doi.org/10.5194/acp-16-4927-2016, https://doi.org/10.5194/acp-16-4927-2016, 2016
Short summary
Short summary
We examine the impacts of monthly variations in Pacific-North America (PNA) teleconnection on aerosol concentrations in the United States during wintertime by observations from the EPA-AQS and the model results from the GEOS-Chem. The surface-layer PM2.5 concentrations in the PNA positive phases were higher by 8.7 % (12.2 %) relative to the PNA negative phases based on observed (simulated) concentrations, which have important implications for understanding and prediction of air quality in the US.
W. Wang, W. Tian, S. Dhomse, F. Xie, J. Shu, and J. Austin
Atmos. Chem. Phys., 14, 12967–12982, https://doi.org/10.5194/acp-14-12967-2014, https://doi.org/10.5194/acp-14-12967-2014, 2014
Y. Yang, H. Liao, and J. Li
Atmos. Chem. Phys., 14, 6867–6879, https://doi.org/10.5194/acp-14-6867-2014, https://doi.org/10.5194/acp-14-6867-2014, 2014
Y. F. Huo, M. Z. Duan, and W. S. Tian
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-2405-2014, https://doi.org/10.5194/amtd-7-2405-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Comment on “An approach to sulfate geoengineering with surface emissions of carbonyl sulfide” by Quaglia et al. (2022)
The climate impact of hydrogen-powered hypersonic transport
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
Key drivers of ozone change and its radiative forcing over the 21st century
Implications of potential future grand solar minimum for ozone layer and climate
Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model
Marc von Hobe, Christoph Brühl, Sinikka T. Lennartz, Mary E. Whelan, and Aleya Kaushik
Atmos. Chem. Phys., 23, 6591–6598, https://doi.org/10.5194/acp-23-6591-2023, https://doi.org/10.5194/acp-23-6591-2023, 2023
Short summary
Short summary
Carbonyl sulfide plays a role in the climate system as a greenhouse gas and as the major non-volcanic precursor of particles reflecting sunlight. Here, we comment on a proposal to increase the number of particles by emitting extra carbonyl sulfide at the surface. We show that the balance between aerosol cooling and greenhouse gas warming may not be as favorable as suggested and also that much of the carbonyl sulfide emissions will actually be taken up by the biosphere and the oceans.
Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe
Atmos. Chem. Phys., 22, 14323–14354, https://doi.org/10.5194/acp-22-14323-2022, https://doi.org/10.5194/acp-22-14323-2022, 2022
Short summary
Short summary
Very fast aircraft can travel long distances in extremely short times and can fly at high altitudes (15 to 35 km). These aircraft emit water vapour, nitrogen oxides, and hydrogen. Water vapour emissions remain for months to several years at these altitudes and have an important impact on temperature. We investigate two aircraft fleets flying at 26 and 35 km. Ozone is depleted more, and the water vapour perturbation and temperature change are larger for the aircraft flying at 35 km.
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020, https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself.
This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere.
However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018, https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary
Short summary
This study explores future ozone radiative forcing (RF) and the relative contribution due to different drivers. Climate-induced ozone RF is largely the result of the interplay between lightning-produced ozone and enhanced ozone destruction in a warmer and wetter atmosphere. These results demonstrate the importance of stratospheric–tropospheric interactions and the stratosphere as a key region controlling a large fraction of the tropospheric ozone RF.
Pavle Arsenovic, Eugene Rozanov, Julien Anet, Andrea Stenke, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 18, 3469–3483, https://doi.org/10.5194/acp-18-3469-2018, https://doi.org/10.5194/acp-18-3469-2018, 2018
Short summary
Short summary
Global warming will persist in the 21st century, even if the solar activity undergoes an unusually strong and long decline. Decreased ozone production caused by reduction of solar activity and change of atmospheric dynamics due to the global warming might result in further thinning of the tropical ozone layer. Globally, total ozone would not recover to the pre-ozone hole values as long as the decline of solar activity lasts. This may let more ultra-violet radiation reach the Earth's surface.
W. H. Swartz, R. S. Stolarski, L. D. Oman, E. L. Fleming, and C. H. Jackman
Atmos. Chem. Phys., 12, 5937–5948, https://doi.org/10.5194/acp-12-5937-2012, https://doi.org/10.5194/acp-12-5937-2012, 2012
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The version-2 global precipitation climatology
project (GPCP) monthly precipitation analysis (1979–present),
J. Hydrometeorol., 4, 1147–1167, 2003.
Archer, C. L. and Caldeira, K.: Historical trends in the jet streams,
Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614, 2008.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Barlow, M., Nigam, S., and Berbery, E. H.: ENSO, Pacific decadal
variability, and US summertime precipitation, drought, and stream flow, J.
Climate, 14, 2105–2128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2, 2001.
Bitz, C. M. and Polvani, L. M.: Antarctic climate response to stratospheric
ozone depletion in a fine resolution ocean climate model, Geophys. Res.
Lett., 39, L20705, https://doi.org/10.1029/2012GL053393, 2012.
Black, R. X. and Mcdaniel, B. A.: The Dynamics of Northern Hemisphere
Stratospheric Final Warming Events, J. Atmos. Sci., 64, 2932–2946,
https://doi.org/10.1175/Jas3981.1, 2006.
Black, R. X. and Mcdaniel, B. A.: SubMonthly polar vortex variability and
stratosphere-troposphere coupling in the Arctic, J. Climate, 22, 5886–5901,
https://doi.org/10.1175/2009JCLI2730.1, 2009.
Black, R. X., Mcdaniel, B. A., and Robinson, W. A.: Stratosphere Troposphere
Coupling during Spring Onset, J. Climate, 19, 4891–4901,
https://doi.org/10.1175/Jcli3907.1, 2005.
Cagnazzo, C. and Manzini, E.: Impact of the Stratosphere on the Winter
Tropospheric Teleconnections between ENSO and the North Atlantic and
European Region, J. Climate, 22, 1223–1238, https://doi.org/10.1175/2008JCLI2549.1,
2009.
Calvo, N., Polvani, L. M., and Solomon, S.: On the surface impact of Arctic
stratospheric ozone extremes, Environ. Res. Lett., 10, 094003,
https://doi.org/10.1088/1748-9326/10/9/094003, 2015.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden
warmings. Part I: Climatology and modeling benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Cheung, J. C. H., Haigh, J. D., and Jackson, D. R.: Impact of EOS MLS ozone
data on medium-extended range ensemble weather forecasts, J. Geophys. Res.,
119, 9253–9266, https://doi.org/10.1002/2014JD021823, 2014.
Davis, S. M., Rosenlof, K. H., Hassler, B., Hurst, D. F., Read, W. G., Vömel,
H., Selkirk, H., Fujiwara, M., and Damadeo, R.: The Stratospheric Water and
Ozone Satellite Homogenized (SWOOSH) database: a long-term database for
climate studies, Earth Syst. Sci. Data, 8, 461–490,
https://doi.org/10.5194/essd-8-461-2016, 2016.
Feldstein, S. B.: Subtropical Rainfall and the Antarctic Ozone Hole,
Science, 332, 925–926, https://doi.org/10.1126/science.1206834, 2011.
Forster, P. M. D. and Shine, K. P.: Radiative forcing and temperature trends
from stratospheric ozone changes, J. Geophys. Res., 102, 10841–10855,
https://doi.org/10.1029/96JD03510, 1997.
Froidevaux, L., Anderson, J., Wang, H.-J., Fuller, R. A., Schwartz, M. J.,
Santee, M. L., Livesey, N. J., Pumphrey, H. C., Bernath, P. F., Russell III,
J. M., and McCormick, M. P.: Global OZone Chemistry And Related trace gas
Data records for the Stratosphere (GOZCARDS): methodology and sample results
with a focus on HCl, H2O, and O3, Atmos. Chem. Phys., 15, 10471–10507,
https://doi.org/10.5194/acp-15-10471-2015, 2015.
Gabriel, A., Peters, D., Kirchner, I., and Graf, H. F.: Effect of zonally
asymmetric ozone on stratospheric temperature and planetary wave
propagation, Geophys. Res. Lett., 34, L06807, https://doi.org/10.1029/2006GL028998,
2007.
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.:
Simulation of secular trends in the middle atmosphere, 1950–2003, J.
Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485, 2007.
Gerber, E. P. and Son, S. W.: Quantifying the Summertime Response of the
Austral Jet Stream and Hadley Cell to Stratospheric Ozone and Greenhouse
Gases, J. Climate, 27, 5538–5559, https://doi.org/10.1175/JCLI-D-13-00539.1, 2014.
Gillett, N. P., Scinocca, J. F., Plummer, D. A., and Reader, M. C.:
Sensitivity of climate to dynamically-consistent zonal asymmetries in ozone,
Geophys. Res. Lett., 36, L10809, https://doi.org/10.1029/2009GL037246, 2009.
Graf, H. F. and Walter, K.: Polar vortex controls coupling of North Atlantic
Ocean and atmosphere, Geophys. Res. Lett., 32, L01704,
https://doi.org/10.1029/2004GL020664, 2005.
Haigh, J. D.: The Role of Stratospheric Ozone in Modulating the Solar
Radiative Forcing of Climate, Nature, 370, 544–546, https://doi.org/10.1038/370544a0,
1994.
Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.:
Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt
Ponds and Aerosols on Arctic Sea Ice, J. Climate, 25, 1413–1430,
https://doi.org/10.1175/JCLI-D-11-00078.1, 2012.
Hu, Y., Tao, L., and Liu, J.: Poleward expansion of the Hadley circulation
in CMIP5 simulations, Adv. Atmos. Sci., 30, 790–795,
https://doi.org/10.1007/s00376-012-2187-4, 2013.
Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A.,
Janowiak, J., McNab, A., Rudolf, B., and Schneider, U.: The Global
Precipitation Climatology Project (GPCP) Combined Precipitation Dataset, B.
Am. Meteorol. Soc., 78, 5–20, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.Co;2, 1997.
Ineson, S. and Scaife, A. A.: The role of the stratosphere in the European
climate response to El Nino, Nat. Geosci., 2, 32–36, https://doi.org/10.1038/NGEO381,
2009.
Ivy, D. J., Solomon, S., Calvo, N., and Thompson, D. W.: Observed
connections of Arctic stratospheric ozone extremes to Northern Hemisphere
surface climate, Environ. Res. Lett., 12, 024004,
https://doi.org/10.1088/1748-9326/aa57a4, 2017.
Kang, S. M., Polvani, L. M., Fyfe, J. C., and Sigmond, M.: Impact of Polar
Ozone Depletion on Subtropical Precipitation, Science, 332, 951–954,
https://doi.org/10.1126/science.1202131, 2011.
Karpechko, A. Y., Perlwitz, J., and Manzini, E.: A model study of
tropospheric impacts of the Arctic ozone depletion 2011, J. Geophys. Res.,
119, 7999–8014, https://doi.org/10.1002/2013JD021350, 2014.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/NGEO2424, 2015.
Labitzke, K. and Naujokat, B.: The lower Arctic stratosphere in winter since
1952, Sparc Newsletter, 15, 11–14, 2000.
Lau, K. M., Kim, K. M., and Shen, S. S.: Potential predictability of
seasonal precipitation over the U.S. from canonical ensemble correlation
predictions, Geophys. Res. Lett., 29, 1–4, https://doi.org/10.1029/2001GL014263, 2002.
Li, F., Vikhliaev, Y. V., Newman, P. A., Pawson, S., Perlwitz, J., Waugh, D.
W., and Douglass, A. R.: Impacts of Interactive Stratospheric Chemistry on
Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing
System, Version 5 (GEOS-5), J. Climate, 29, 3199–3218,
https://doi.org/10.1175/JCLI-D-15-0572.1, 2016.
Lu, J., Deser, C., and Reichler, T.: Cause of the widening of the tropical
belt since 1958, Geophys. Res. Lett., 36, L03803, https://doi.org/10.1029/2008GL036076,
2009.
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C.,
Veefkind, P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L.,
Poole, L. R., Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V.,
Gernandt, H., Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P.
F., Makshtas, A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick,
D. W., von der Gathen, P., Walker, K. A., and Zinoviev, N. S.: Unprecedented
Arctic ozone loss in 2011, Nature, 478, 469–475,
https://doi.org/10.1038/nature10556, 2011.
Manney, G. L. and Lawrence, Z. D.: The major stratospheric final warming in
2016: dispersal of vortex air and termination of Arctic chemical ozone loss,
Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, 2016.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and
Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
McCormack, J. P., Nathan, T. R., and Cordero, E. C.: The effect of zonally
asymmetric ozone heating on the Northern Hemisphere winter polar
stratosphere, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2010GL045937,
2011.
McLandress, C., Shepherd, T. G., Scinocca, J. F., Plummer, D. A., Sigmond,
M., Jonsson, A. I., and Reader, M. C.: Separating the dynamical effects of
climate change and ozone depletion. Part II: Southern Hemisphere
troposphere, J. Climate, 24, 1850–1868, https://doi.org/10.1175/2010JCLI3958.1, 2011.
Min, S. K. and Son, S. W.: Multimodel attribution of the Southern Hemisphere
Hadley cell widening: Major role of ozone depletion, J. Geophys. Res., 118,
3007–3015, https://doi.org/10.1002/jgrd.50232, 2013.
Namias, J.: Some causes of U.S. drought, J. Clim. Appl. Meteorol., 22,
30–39, https://doi.org/10.1175/1520-0450(1983)022<0030:Scousd>2.0.Co;2, 1983.
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch,
P. J., and Zhang, M. H.: The Mean Climate of the Community Atmosphere Model
(CAM4) in Forced SST and Fully Coupled Experiments, J. Climate, 26,
5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013.
Nowack, P. J., Abraham, N. L., Maycock, A. C., Braesicke, P., Gregory, J.
M., Joshi, M. M., Osprey, A., and Pyle, J. A.: A large ozone-circulation
feedback and its implications for global warming assessments, Nat. Clim.
Change, 5, 41–45, https://doi.org/10.1038/NCLIMATE2451, 2015.
Nowack, P. J., Braesicke, P., Abraham, N. L., and Pyle, J. A.: On the role
of ozone feedback in the ENSO amplitude response under global warming,
Geophys. Res. Lett., 44, 3858–3866, https://doi.org/10.1002/2016GL072418, 2017.
Nowack, P. J., Abraham, N. L., Braesicke, P., and Pyle, J. A.: The impact of
stratospheric ozone feedbacks on climate sensitivity estimates, J. Geophys.
Res., 123, 4630–4641, https://doi.org/10.1002/2017JD027943, 2018.
Pawson, S. and Naujokat, B.: The cold winters of the middle 1990s in the
northern lower stratosphere, J. Geophys. Res., 104, 14209–14222,
https://doi.org/10.1029/1999JD900211, 1999.
Polvani, L. M., Waugh, D. W., Correa, G. J., and Son, S.-W.: Stratospheric
ozone depletion: The main driver of twentieth-century atmospheric
circulation changes in the Southern Hemisphere, J. Climate, 24, 795–812,
https://doi.org/10.1175/2010JCLI3772.1, 2011.
Ramaswamy, V., Schwarzkopf, M. D., and Randel, W. J.: Fingerprint of ozone
depletion in the spatial and temporal pattern of recent lower-stratospheric
cooling, Nature, 382, 616–618, https://doi.org/10.1038/382616a0, 1996.
Randel, W. J.: The Seasonal Evolution of Planetary-Waves in the
Southern-Hemisphere Stratosphere and Troposphere, Q. J.
Roy. Meteorol. Soc., 114, 1385–1409, https://doi.org/10.1002/qj.49711448403,
1988.
Randel, W. J. and Wu, F.: Cooling of the arctic and antarctic polar
stratospheres due to ozone depletion, J. Climate, 12, 1467–1479,
https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.Co;2, 1999.
Randel, W. J. and Wu, F.: A stratospheric ozone profile data set for
1979-2005: Variability, trends, and comparisons with column ozone data, J.
Geophys. Res., 112, D06313, https://doi.org/10.1029/2006JD007339, 2007.
Ravishankara, A. R., Turnipseed, A. A., Jensen, N. R., Barone, S., Mills,
M., Howard, C. J., and Solomon, S.: Do hydrofluorocarbons destroy
stratospheric ozone?, Science, 263, 71–75, https://doi.org/10.1126/science.263.5143.71,
1994.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide
(N2O): the dominant ozone-depleting substance emitted in the 21st century,
Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., and Rowell, D. P.: Global analyses of sea surface temperature, sea ice,
and night marine air temperature since the late nineteenth century, J.
Geophys. Res., 108, 4407, 2003.
Reichler, T., Kim, J., Manzini, E., and Kroger, J.: A stratospheric
connection to Atlantic climate variability, Nat. Geosci., 5, 783–787,
https://doi.org/10.1038/NGEO1586, 2012.
Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J., and
Toggweiler, J. R.: The Southern Hemisphere westerlies in a warming world:
Propping open the door to the deep ocean, J. Climate, 19, 6382–6390,
https://doi.org/10.1175/JCLI3984.1, 2006.
Schneider, U., Fuchs, T., Meyer-Christoffer, A., and Rudolf, B.: Global
precipitation analysis products of the GPCC, Global Precipitation Climatology
Centre, 12 pp., 2008.
Smith, K. L. and Polvani, L. M.: The surface impacts of Arctic stratospheric
ozone anomalies, Environ. Res. Lett., 9, 074015,
https://doi.org/10.1088/1748-9326/9/7/074015, 2014.
Solomon, S.: Antarctic ozone: Progress towards a quantitative understanding,
Nature, 347, 354, https://doi.org/10.1038/347347a0, 1990.
Solomon, S.: Stratospheric ozone depletion: A review of concepts and
history, Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999.
Son, S.-W., Tandon, N. F., Polvani, L. M., and Waugh, D. W.: Ozone hole and
Southern Hemisphere climate change, Geophys. Res. Lett., 36, L15705,
https://doi.org/10.1029/2009GL038671, 2009.
Son, S.-W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P.,
Seo, K.-H., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin,
J., Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N.,
Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny,
H., Garcia, R., Hardiman, S. C., Jöckel, P., Lamarque, J. F., Mancini,
E., Marchand, M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G.,
Plummer, D. A., Pyle, J., Rozanov, E., Scinocca, J. F., Shibata, K., Smale,
D., Teyssèdre, H., Tian, W., and Yamashita, Y.: Impact of stratospheric
ozone on Southern Hemisphere circulation change: A multimodel assessment, J.
Geophys. Res., 115, D00M07, doi.org/10.1029/2010JD014271, 2010.
Thompson, D. W. J. and Solomon, S.: Interpretation of recent Southern
Hemisphere climate change, Science, 296, 895–899,
https://doi.org/10.1126/science.1069270, 2002.
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K.
M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749,
https://doi.org/10.1038/NGEO1296, 2011.
Ting, M. and Wang, H.: Summertime US Precipitation Variability and Its
Relation toPacific Sea Surface Temperature, J. Climate, 10, 1853–1873,
https://doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2,
1997.
Tung, K. K.: On the Relationship between the Thermal Structure of the
Stratosphere and the Seasonal Distribution of Ozone, Geophys. Res. Lett.,
13, 1308–1311, https://doi.org/10.1029/GL013i012p01308, 1986.
Wang, F., Yang, S., Higgins, W., Li, Q. P., and Zuo, Z. Y.: Long-term
changes in total and extreme precipitation over China and the U.S. and their
links to oceanic-atmospheric features, Int. J. Climatol., 34, 286–302,
https://doi.org/10.1002/joc.3685, 2014.
Wang, H. and Ting, M. F.: Covariabilities of winter US precipitation and
Pacific Sea surface temperatures, J. Climate, 13, 3711–3719,
https://doi.org/10.1175/1520-0442(2000)013<3711:Cowusp>2.0.Co;2,
2000.
Wang, L., Ting, M., and Kushner, P. J.: A robust empirical seasonal prediction
of winter NAO and surface climate, Sci. Rep., 7, 279, 2017.
Waugh, D. W., Garfinkel, C. I., and Polvani, L. M.: Drivers of the Recent
Tropical Expansion in the Southern Hemisphere: Changing SSTs or Ozone
Depletion?, J. Climate, 28, 6581–6586, https://doi.org/10.1175/JCLI-D-15-0138.1, 2015.
WMO: Scientific Assessment of Ozone depletion: 2002. In: Global Ozone
Research and Monitoring Project, Report No. 47, Geneva, 498 pp., 2003.
WMO: Scientific Assessment of Ozone Depletion: 2010. WMO Tech. Note 52,
World Meteorological Organization, Geneva, Switzerland, 516 pp., 2011.
Xie, F., Li, J., Tian, W., Fu, Q., Jin, F.-F., Hu, Y., Zhang, J., Wang, W.,
Sun, C., Feng, J., Yang, Y., and Ding, R.: A connection from Arctic
stratospheric ozone to El Niño-Southern Oscillation, Environ. Res.
Lett., 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026, 2016.
Xie, F., Li, J., Zhang, J., Tian, W., Hu, Y., Zhao, S., Sun, C., Ding, R.,
Feng, J., and Yang, Y.: Variations in North Pacific sea surface temperature
caused by Arctic stratospheric ozone anomalies, Environ. Res. Lett., 12,
114023, https://doi.org/10.1088/1748-9326/aa9005, 2017a.
Xie, F., Zhang, J., Sang, W., Li, Y., Qi, Y., Sun, C., and Shu, J.: Delayed
effect of Arctic stratospheric ozone on tropical rainfall, Atmos. Sci.
Lett., 18, 409–416, 2017b.
Xie, F., Ma, X., Li, J., Huang, J., Tian, W., Zhang, J., Hu, Y., Sun, C.,
Zhou, X., Feng, J., and Yang, Y.: An advanced impact of Arctic stratospheric
ozone changes on spring precipitation in China, Clim. Dynam., 51, 4029–4041,
do:10.1007/s00382-018-4402-1, 2018.
Yin, J. H.: A consistent poleward shift of the storm tracks in simulations
of 21st century climate, Geophys. Res. Lett., 32, L18701,
https://doi.org/10.1029/2005GL023684, 2005.
Zhang, J. K., Tian, W. S., Chipperfield, M. P., Xie, F., and Huang, J. L.:
Persistent shift of the Arctic polar vortex towards the Eurasian continent
in recent decades, Nat. Clim. Change., 6, 1094–1099,
https://doi.org/10.1038/nclimate3136, 2016.
Zhang J. K., Tian, W. S., Xie, F., Chipperfield, M. P., Feng, W. H., Son,
S-W., Abraham, N. L., Archibald, A. T., Bekki, S., Butchart, N., Deushi, M.,
Dhomse, S., Han, Y. Y., Jöckel, P., Kinnison, D., Kirner, O., Michou,
M., Morgenstern, O., O'Connor, F. M., Pitari, G., Plummer, D. A., Revell, L.
E., Rozanov, E., Visioni, D., Wang, W. K., and Zeng, G.: Stratospheric ozone
loss over the Eurasian continent induced by the polar vortex shift, Nat.
Commun., 9, 206, https://doi.org/10.1038/s41467-017-02565-2, 2018.
Altmetrics
Final-revised paper
Preprint