Articles | Volume 19, issue 11
https://doi.org/10.5194/acp-19-7335-2019
https://doi.org/10.5194/acp-19-7335-2019
Research article
 | 
04 Jun 2019
Research article |  | 04 Jun 2019

Temporal variations and trend of ground-level ozone based on long-term measurements in Windsor, Canada

Xiaohong Xu, Tianchu Zhang, and Yushan Su

Related authors

Potential sources and processes affecting speciated atmospheric mercury at Kejimkujik National Park, Canada: comparison of receptor models and data treatment methods
Xiaohong Xu, Yanyin Liao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 17, 1381–1400, https://doi.org/10.5194/acp-17-1381-2017,https://doi.org/10.5194/acp-17-1381-2017, 2017
Short summary
Overview of receptor-based source apportionment studies for speciated atmospheric mercury
I. Cheng, X. Xu, and L. Zhang
Atmos. Chem. Phys., 15, 7877–7895, https://doi.org/10.5194/acp-15-7877-2015,https://doi.org/10.5194/acp-15-7877-2015, 2015
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024,https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024,https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024,https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024,https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024,https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary

Cited articles

Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., and Itano, Y.: Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: Causes of temporal and spatial variation, Atmos. Environ., 102, 302–310, 2015. 
Aleksic, N., Sedefian, L., and Ku, M.: Empirical estimates of summer background ozone levels in New York State, New York State Department of Environmental Conservation, Albany, NY, 2011. 
Carter, W. P. L.: Development of ozone reactivity scales for volatile organic compounds, J. Air Waste Manag. Assoc., 44, 881–899, 1994. 
Carter, W. P. L.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, University of California, Riverside, CA, available at: http://www.engr.ucr.edu/~carter/pubs/s99doc.pdf (last access: 4 June 2018), 1999. 
Chang, K. L., Petropavlovskikh, I., Cooper, O. R., Schultz, M. G., and Wang, T.: Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia, Elem. Sci. Anth., 5, 50, https://doi.org/10.1525/elementa.243, 2017. 
Download
Short summary
This study investigates temporal variations and long-term trends in O3 (ozone) and its precursors in Windsor, Canada. During the 1996–2015 period, NOx (nitric oxides) and non-methane hydrocarbon concentrations decreased by 58 % and 61 %, respectively. Annual O3 concentrations increased by 33 % due to (1) decreased O3 titration owing to declining NOx concentrations, (2) reduced local photochemical production of O3 because of dwindling precursor emissions, and (3) increased background O3 level.
Altmetrics
Final-revised paper
Preprint