Articles | Volume 19, issue 9
Atmos. Chem. Phys., 19, 6295–6313, 2019
Atmos. Chem. Phys., 19, 6295–6313, 2019
Research article
14 May 2019
Research article | 14 May 2019

Cloud droplet growth in shallow cumulus clouds considering 1-D and 3-D thermal radiative effects

Carolin Klinger et al.

Related authors

Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500,,, 2017
Short summary
Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations
M. Righi, V. Eyring, K.-D. Gottschaldt, C. Klinger, F. Frank, P. Jöckel, and I. Cionni
Geosci. Model Dev., 8, 733–768,,, 2015

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630,,, 2022
Short summary
Aerosol characteristics and polarimetric signatures for a deep convective storm over the northwestern part of Europe – modeling and observations
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117,,, 2022
Short summary
Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records
Jia He, Helene Brogniez, and Laurence Picon
Atmos. Chem. Phys., 22, 12591–12606,,, 2022
Short summary
Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441,,, 2022
Short summary
The impacts of secondary ice production on microphysics and dynamics in tropical convection
Zhipeng Qu, Alexei Korolev, Jason A. Milbrandt, Ivan Heckman, Yongjie Huang, Greg M. McFarquhar, Hugh Morrison, Mengistu Wolde, and Cuong Nguyen
Atmos. Chem. Phys., 22, 12287–12310,,, 2022
Short summary

Cited articles

Ackerman, A. S., Hobbs, P. V., and Toon, O. B.: A Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements, J. Atmos. Sci., 52, 1204–1236,<1204:AMFPMT>2.0.CO;2, 1995. a
Austin, P. H., Siems, S., and Wang, Y.: Constraints on droplet growth in radiatively cooled stratocumulus clouds, J. Geophys. Res.-Atmos., 100, 14231–14242,, 1995. a, b
Barkstrom, B. R.: Some Effects of 8–12 µm Radiant Energy Transfer on the Mass and Heat Budgets of Cloud Droplets, J. Atmos. Sci., 35, 665–673,<0665:SEORET>2.0.CO;2, 1978. a
Bott, A., Sievers, U., and Zdunkowski, W.: A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics, J. Atmos. Sci., 47, 2153–2166,<2153:ARFMWA>2.0.CO;2, 1990. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 571–657, Cambridge University Press, 2013. a
Short summary
The effect of 1-D and 3-D thermal radiation on cloud droplet growth in shallow cumulus clouds is investigated using large eddy simulations with size-resolved cloud microphysics. A two-step approach is used for separating microphysical effects from dynamical feedbacks. In a parcel framework the main effect on rain production arises from recirculating parcels. Large eddy simulations show that radiative effects on dynamics are stronger than on microphysics, as far as rain production is concerned.
Final-revised paper