Articles | Volume 19, issue 3
https://doi.org/10.5194/acp-19-1703-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-1703-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes
Enno Bahlmann
CORRESPONDING AUTHOR
Institute of Geology, University Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany
Frank Keppler
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234–236, 69120 Heidelberg, Germany
Heidelberg Center for the Environment (HCE), Heidelberg University, 69120 Heidelberg, Germany
Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Julian Wittmer
Atmospheric Chemistry Research Unit, BayCEER, University of Bayreuth, Dr Hans-Frisch Strasse 1–3, 95448 Bayreuth, Germany
Agilent Technologies Sales & Services GmbH & Co. KG, Hewlett-Packard-Str. 8, 76337 Waldbronn, Germany
Markus Greule
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234–236, 69120 Heidelberg, Germany
Heidelberg Center for the Environment (HCE), Heidelberg University, 69120 Heidelberg, Germany
Heinz Friedrich Schöler
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234–236, 69120 Heidelberg, Germany
Richard Seifert
Institute of Geology, University Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Cornelius Zetzsch
Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Atmospheric Chemistry Research Unit, BayCEER, University of Bayreuth, Dr Hans-Frisch Strasse 1–3, 95448 Bayreuth, Germany
Related authors
Kazuki Kamezaki, Shohei Hattori, Enno Bahlmann, and Naohiro Yoshida
Atmos. Meas. Tech., 12, 1141–1154, https://doi.org/10.5194/amt-12-1141-2019, https://doi.org/10.5194/amt-12-1141-2019, 2019
Short summary
Short summary
Knowledge related to sulfur isotopic composition of carbonyl sulfide (OCS or COS), the most abundant atmospheric sulfur species, remains scarce. We present a new sampling system for collecting approx. 10 nmol of OCS from ambient air coupled with a purification system. The system presented herein is useful for application of sulfur isotopic compositions for investigation of OCS sources and sinks in the troposphere to elucidate its cycle and its contribution to background stratospheric sulfate.
Frank Keppler, Enno Bahlmann, Markus Greule, Heinz Friedrich Schöler, Julian Wittmer, and Cornelius Zetzsch
Atmos. Chem. Phys., 18, 6625–6635, https://doi.org/10.5194/acp-18-6625-2018, https://doi.org/10.5194/acp-18-6625-2018, 2018
Short summary
Short summary
Chloromethane is involved in stratospheric ozone depletion, but detailed knowledge of its global budget is missing. In this study stable hydrogen isotope analyses were performed to investigate the dominant loss process for atmospheric chloromethane with photochemically produced hydroxyl radicals. The findings might have significant implications for the use of stable isotope signatures in elucidation of global chloromethane cycling.
Anna Wieland, Markus Greule, Philipp Roemer, Jan Esper, and Frank Keppler
Clim. Past, 18, 1849–1866, https://doi.org/10.5194/cp-18-1849-2022, https://doi.org/10.5194/cp-18-1849-2022, 2022
Short summary
Short summary
We examined annually resolved stable carbon and hydrogen isotope ratios of wood lignin methoxy groups of beech trees growing in temperate, low elevation environments. Here, carbon isotope ratios reveal highest correlations with regional summer temperatures while hydrogen isotope ratios correlate more strongly with large-scale temperature changes. By combining the dual isotope ratios of wood lignin methoxy groups, a proxy for regional- to subcontinental-scale temperature patterns can be applied.
Moritz Schroll, Frank Keppler, Markus Greule, Christian Eckhardt, Holger Zorn, and Katharina Lenhart
Biogeosciences, 17, 3891–3901, https://doi.org/10.5194/bg-17-3891-2020, https://doi.org/10.5194/bg-17-3891-2020, 2020
Short summary
Short summary
Fungi have recently been identified to produce the greenhouse gas methane. Here, we investigated the stable carbon isotope values of methane produced by saprotrophic fungi. Our results show that stable isotope values of methane from fungi are dependent on the fungal species and the metabolized substrate. They cover a broad range and overlap with stable carbon isotope values of methane reported for methanogenic archaea, the thermogenic degradation of organic matter, and other eukaryotes.
Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Anna Wieland, Katharina Lenhart, and Frank Keppler
Biogeosciences, 16, 4129–4144, https://doi.org/10.5194/bg-16-4129-2019, https://doi.org/10.5194/bg-16-4129-2019, 2019
Short summary
Short summary
Marine algae might contribute to the observed methane oversaturation in oxic waters, but so far direct evidence for methane production by marine algae is limited. We investigated three widespread haptophytes for methane formation. Our results provide unambiguous evidence that all investigated marine algae produce methane per se and at substantial rates. We conclude that each of the three algae studied here could substantially account for the methane production observed in field studies.
Simon Michael Ritter, Margot Isenbeck-Schröter, Christian Scholz, Frank Keppler, Johannes Gescher, Lukas Klose, Nils Schorndorf, Jerónimo Avilés Olguín, Arturo González-González, and Wolfgang Stinnesbeck
Biogeosciences, 16, 2285–2305, https://doi.org/10.5194/bg-16-2285-2019, https://doi.org/10.5194/bg-16-2285-2019, 2019
Short summary
Short summary
Unique and spectacular under water speleothems termed as Hells Bells were recently reported from sinkholes (cenotes) of the Yucatán Peninsula, Mexico. However, the mystery of their formation remained unresolved. Here, we present detailed geochemical analyses and delineate that the growth of Hells Bells results from a combination of biogeochemical processes and variable hydraulic conditions within the cenote.
Kazuki Kamezaki, Shohei Hattori, Enno Bahlmann, and Naohiro Yoshida
Atmos. Meas. Tech., 12, 1141–1154, https://doi.org/10.5194/amt-12-1141-2019, https://doi.org/10.5194/amt-12-1141-2019, 2019
Short summary
Short summary
Knowledge related to sulfur isotopic composition of carbonyl sulfide (OCS or COS), the most abundant atmospheric sulfur species, remains scarce. We present a new sampling system for collecting approx. 10 nmol of OCS from ambient air coupled with a purification system. The system presented herein is useful for application of sulfur isotopic compositions for investigation of OCS sources and sinks in the troposphere to elucidate its cycle and its contribution to background stratospheric sulfate.
Tobias Anhäuser, Birgit Sehls, Werner Thomas, Claudia Hartl, Markus Greule, Denis Scholz, Jan Esper, and Frank Keppler
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-8, https://doi.org/10.5194/cp-2019-8, 2019
Revised manuscript not accepted
Frank Keppler, Enno Bahlmann, Markus Greule, Heinz Friedrich Schöler, Julian Wittmer, and Cornelius Zetzsch
Atmos. Chem. Phys., 18, 6625–6635, https://doi.org/10.5194/acp-18-6625-2018, https://doi.org/10.5194/acp-18-6625-2018, 2018
Short summary
Short summary
Chloromethane is involved in stratospheric ozone depletion, but detailed knowledge of its global budget is missing. In this study stable hydrogen isotope analyses were performed to investigate the dominant loss process for atmospheric chloromethane with photochemically produced hydroxyl radicals. The findings might have significant implications for the use of stable isotope signatures in elucidation of global chloromethane cycling.
Katharina Lenhart, Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Michael Bunge, Sylvia Schnell, and Frank Keppler
Biogeosciences, 13, 3163–3174, https://doi.org/10.5194/bg-13-3163-2016, https://doi.org/10.5194/bg-13-3163-2016, 2016
Short summary
Short summary
In this study we investigated marine algae as a source of CH4 in oxic surface waters of oceans. Algae-derived CH4 may explain the CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox".
This finding of an overlooked source of CH4 in marine environments will be of considerable importance to scientists in many disciplines because algae play a crucial role in organic matter cycling in marine and freshwater ecosystems.
K. Lenhart, F. Althoff, M. Greule, and F. Keppler
Biogeosciences, 12, 1907–1914, https://doi.org/10.5194/bg-12-1907-2015, https://doi.org/10.5194/bg-12-1907-2015, 2015
Short summary
Short summary
Plants are known as a source of methane (CH4), but the biochemical mechanisms involved in CH4 formation are still unknown. Employing 13C-labelled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of CH4 released from lavender plants. When relating CH4 emission rates to dark respiration of intact plants, we found a molar CH4:CO2 emission ratio of 2.0 ±1.1 (pmol:µmol). After physical stress CH4 release rates greatly increased.
T. Krause, C. Tubbesing, K. Benzing, and H. F. Schöler
Biogeosciences, 11, 2871–2882, https://doi.org/10.5194/bg-11-2871-2014, https://doi.org/10.5194/bg-11-2871-2014, 2014
S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, and C. Zetzsch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10135-2014, https://doi.org/10.5194/acpd-14-10135-2014, 2014
Revised manuscript has not been submitted
D. J. Hoch, J. Buxmann, H. Sihler, D. Pöhler, C. Zetzsch, and U. Platt
Atmos. Meas. Tech., 7, 199–214, https://doi.org/10.5194/amt-7-199-2014, https://doi.org/10.5194/amt-7-199-2014, 2014
A. Jugold, F. Althoff, M. Hurkuck, M. Greule, K. Lenhart, J. Lelieveld, and F. Keppler
Biogeosciences, 9, 5291–5301, https://doi.org/10.5194/bg-9-5291-2012, https://doi.org/10.5194/bg-9-5291-2012, 2012
Related subject area
Subject: Isotopes | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core
Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO2: implications for δ15N in tropospheric reactive nitrogen
Temporal variation in 129I and 127I in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events
High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China
Dependence between the photochemical age of light aromatic hydrocarbons and the carbon isotope ratios of atmospheric nitrophenols
Atmospheric Δ17O(NO3−) reveals nocturnal chemistry dominates nitrate production in Beijing haze
Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl
Stable carbon isotope ratios of ambient aromatic volatile organic compounds
Kinetic isotope effects of 12CH3D + OH and 13CH3D + OH from 278 to 313 K
Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs
Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air
NOx cycle and the tropospheric ozone isotope anomaly: an experimental investigation
Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer
Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis
Molecular hydrogen (H2) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H2
Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR
Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Jianghanyang Li, Xuan Zhang, John Orlando, Geoffrey Tyndall, and Greg Michalski
Atmos. Chem. Phys., 20, 9805–9819, https://doi.org/10.5194/acp-20-9805-2020, https://doi.org/10.5194/acp-20-9805-2020, 2020
Short summary
Short summary
Nitrogen isotopic compositions of atmospheric reactive nitrogen are widely used to infer their sources. However, the reactions between NO and NO2 strongly impact their isotopes, which was not well understood. We conducted a series of experiments in an atmospheric simulation chamber to determine the isotopic effects of (1) direct isotopic exchange between NO and NO2 and (2) the isotopic fractionations during NOx photochemistry, then developed an equation to quantify the overall isotopic effect.
Luyuan Zhang, Xiaolin Hou, Sheng Xu, Tian Feng, Peng Cheng, Yunchong Fu, and Ning Chen
Atmos. Chem. Phys., 20, 2623–2635, https://doi.org/10.5194/acp-20-2623-2020, https://doi.org/10.5194/acp-20-2623-2020, 2020
Short summary
Short summary
To trace the long-range transport of air pollutants and understand the atmospheric effect of iodine, the daily-resolution temporal variations of 129I and 127I in aerosols from a monsoonal city indicate the East Asian monsoon and fossil fuel combustion plays crucial roles on transport of 129I from Europe to East Asia and on elevated 127I concentrations. Through linking iodine isotopes with five major air pollutants, this study proposes the possible role of iodine in urban air pollution.
Wenqi Zhang, Yan-Lin Zhang, Fang Cao, Yankun Xiang, Yuanyuan Zhang, Mengying Bao, Xiaoyan Liu, and Yu-Chi Lin
Atmos. Chem. Phys., 19, 11071–11087, https://doi.org/10.5194/acp-19-11071-2019, https://doi.org/10.5194/acp-19-11071-2019, 2019
Short summary
Short summary
A novel method to determine the concentration and the isotopes of WSOC in aerosols is established and applied in the analysis of a severe haze in eastern China. The results show that the studied site is affected by the photochemical aging, biomass burning and dust aerosols in different episodes during the sampling period. The analysis of WSOC and its isotopes offers a great potential to better understand the source emission, the atmospheric aging and the secondary production of WSOC.
Marina Saccon, Anna Kornilova, Lin Huang, and Jochen Rudolph
Atmos. Chem. Phys., 19, 5495–5509, https://doi.org/10.5194/acp-19-5495-2019, https://doi.org/10.5194/acp-19-5495-2019, 2019
Short summary
Short summary
As compound are emitted into the atmosphere, they can undergo chemical reactions to produce secondary products. This paper investigates the relations of compounds' unique chemical characteristics to the processes that formed them from emissions in the atmosphere. A model is applied to help with this investigation. The complexity of the atmosphere, including mixing of air masses and variability in precursor reactivity, is taken into consideration, and results are presented.
Pengzhen He, Zhouqing Xie, Xiyuan Chi, Xiawei Yu, Shidong Fan, Hui Kang, Cheng Liu, and Haicong Zhan
Atmos. Chem. Phys., 18, 14465–14476, https://doi.org/10.5194/acp-18-14465-2018, https://doi.org/10.5194/acp-18-14465-2018, 2018
Short summary
Short summary
We present the first observations of the oxygen-17 excess of atmospheric nitrate (Δ17O(NO−3)) collected in Beijing haze to reveal the relative importance of different nitrate formation pathways. We found that nocturnal pathways (N2O5 + H2O/Cl– and NO3 + HC) dominated nitrate production during polluted days (PM2.5 ≥ 75 μg m–3), with a mean possible fraction of 56–97 %.
Frank Keppler, Enno Bahlmann, Markus Greule, Heinz Friedrich Schöler, Julian Wittmer, and Cornelius Zetzsch
Atmos. Chem. Phys., 18, 6625–6635, https://doi.org/10.5194/acp-18-6625-2018, https://doi.org/10.5194/acp-18-6625-2018, 2018
Short summary
Short summary
Chloromethane is involved in stratospheric ozone depletion, but detailed knowledge of its global budget is missing. In this study stable hydrogen isotope analyses were performed to investigate the dominant loss process for atmospheric chloromethane with photochemically produced hydroxyl radicals. The findings might have significant implications for the use of stable isotope signatures in elucidation of global chloromethane cycling.
Anna Kornilova, Lin Huang, Marina Saccon, and Jochen Rudolph
Atmos. Chem. Phys., 16, 11755–11772, https://doi.org/10.5194/acp-16-11755-2016, https://doi.org/10.5194/acp-16-11755-2016, 2016
Short summary
Short summary
The photochemical oxidation of organic compounds in the atmosphere results in the formation of important secondary pollutants such as ozone and fine particles. The extent of oxidation the organic compounds have been subjected too since there emissions is essential is key for understanding the formation of secondary pollutants. This paper demonstrates that measurements of the carbon isotope ratios allow determining the extent of photochemical processing for individual compounds.
L. M. T. Joelsson, J. A. Schmidt, E. J. K. Nilsson, T. Blunier, D. W. T. Griffith, S. Ono, and M. S. Johnson
Atmos. Chem. Phys., 16, 4439–4449, https://doi.org/10.5194/acp-16-4439-2016, https://doi.org/10.5194/acp-16-4439-2016, 2016
Short summary
Short summary
We present experimental kinetic isotope effects (KIE) for the OH oxidation of CH3D and 13CH3D and their temperature dependence. Our determination of the 13CH3D + OH KIE is novel and we find no "clumped" isotope effect within the experimental uncertainty.
G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang
Atmos. Chem. Phys., 15, 9435–9453, https://doi.org/10.5194/acp-15-9435-2015, https://doi.org/10.5194/acp-15-9435-2015, 2015
Short summary
Short summary
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At high snow accumulation sites, isotopic ratios are suggestive of preservation of NO3- deposition. At low accumulation sites, isotopes are sensitive to both the loss of NO3- due to photolysis and secondary formation of NO3- within the snow. The imprint of post-depositional alteration is not uniform with depth, making it difficult to predict the isotopic composition at depth from near-surface data alone.
S. J. Allin, J. C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P. J. Fraser, R. L. Langenfelds, and W. T. Sturges
Atmos. Chem. Phys., 15, 6867–6877, https://doi.org/10.5194/acp-15-6867-2015, https://doi.org/10.5194/acp-15-6867-2015, 2015
Short summary
Short summary
Stratospheric ozone protects life on Earth from harmful UV-B radiation. Chlorofluorocarbons (CFCs) are man-made compounds which act to destroy this barrier.
This paper presents (1) the first measurements of the stratospheric δ(37Cl) of CFCs -11 and -113; (2) the first quantification of long-term trends in the tropospheric δ(37Cl) of CFCs -11, -12 and -113.
This study provides a better understanding of source and sink processes associated with these destructive compounds.
G. Michalski, S. K. Bhattacharya, and G. Girsch
Atmos. Chem. Phys., 14, 4935–4953, https://doi.org/10.5194/acp-14-4935-2014, https://doi.org/10.5194/acp-14-4935-2014, 2014
E. Harris, B. Sinha, P. Hoppe, S. Foley, and S. Borrmann
Atmos. Chem. Phys., 12, 4619–4631, https://doi.org/10.5194/acp-12-4619-2012, https://doi.org/10.5194/acp-12-4619-2012, 2012
E. Harris, B. Sinha, P. Hoppe, J. N. Crowley, S. Ono, and S. Foley
Atmos. Chem. Phys., 12, 407–423, https://doi.org/10.5194/acp-12-407-2012, https://doi.org/10.5194/acp-12-407-2012, 2012
M. K. Vollmer, S. Walter, S. W. Bond, P. Soltic, and T. Röckmann
Atmos. Chem. Phys., 10, 5707–5718, https://doi.org/10.5194/acp-10-5707-2010, https://doi.org/10.5194/acp-10-5707-2010, 2010
T. Röckmann, S. Walter, B. Bohn, R. Wegener, H. Spahn, T. Brauers, R. Tillmann, E. Schlosser, R. Koppmann, and F. Rohrer
Atmos. Chem. Phys., 10, 5343–5357, https://doi.org/10.5194/acp-10-5343-2010, https://doi.org/10.5194/acp-10-5343-2010, 2010
E. J. K. Nilsson, V. F. Andersen, H. Skov, and M. S. Johnson
Atmos. Chem. Phys., 10, 3455–3462, https://doi.org/10.5194/acp-10-3455-2010, https://doi.org/10.5194/acp-10-3455-2010, 2010
Cited articles
Anderson, R. S., Huang, L., Iannone, R., Thompson, A. E., and Rudolph, J.:
Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes
and Ethene with the OH Radical at 296±4 K, J. Phys. Chem. A, 108,
11537–11544, https://doi.org/10.1021/jp0472008, 2004.
Anderson, R. S., Huang, L., Iannone, R., and Rudolph, J.: Measurements of the
12C∕13C Kinetic Isotope Effects in the Gas-Phase Reactions of
Light Alkanes with Chlorine Atoms, J. Phys. Chem. A, 111, 495–504,
https://doi.org/10.1021/jp064634p, 2007.
Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K.,
Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E.,
Secada, L., Valqui, M., and Hughes, R. F.: High-resolution forest carbon
stocks and emissions in the Amazon, P. Natl. Acad. Sci. USA, 107,
16738–16742, https://doi.org/10.1073/pnas.1004875107, 2010.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M.,
Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A.,
Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from
tropical deforestation improved by carbon-density maps, Nat. Clim. Change, 2,
182–185, https://doi.org/10.1038/nclimate1354, 2012.
Bahlmann, E., Weinberg, I., Seifert, R., Tubbesing, C., and Michaelis, W.: A
high volume sampling system for isotope determination of volatile halocarbons
and hydrocarbons, Atmos. Meas. Tech., 4, 2073–2086,
https://doi.org/10.5194/amt-4-2073-2011, 2011.
Behnke, W., Holländer, W., Koch, W., Nolting, F., and Zetzsch, C.: A
smog chamber for studies of the photochemical degradation of chemicals in
the presence of aerosols, Atmos. Environ., 22, 1113–1120, 1988.
Blei, E., Hardacre, C. J., Mills, G. P., Heal, K. V., and Heal, M. R.:
Identification and quantification of methyl halide sources in a lowland
tropical rainforest, Atmos. Environ., 44, 1005–1010,
https://doi.org/10.1016/j.atmosenv.2009.12.023, 2010.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E.,
Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory,
Pasadena, USA, 2015.
Butler, J. H.: Better budgets for methyl halides?, Nature, 403, 260–261,
https://doi.org/10.1038/35002232, 2000.
Buxmann, J., Balzer, N., Bleicher, S., Platt, U., and Zetzsch, C.:
Observations of bromine explosions in smog chamber experiments above a model
salt pan, Int. J. Chem. Kinet., 44, 312–326, 2012.
Cantrell, C. A., Shetter, R. E., McDaniel, A. H., Calvert, J. G., Davidson,
J. A., Lowe, D. C., Tyler, S. C., Cicerone, R. J., and Greenberg, J. P.:
Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl
radical, J. Geophys. Res.-Atmos., 95, 22455–22462,
https://doi.org/10.1029/JD095iD13p22455, 1990.
Carpenter, L. J., Reimann, S., Burkholder, J. B., Clerbaux, C., Hall, B.,
Hossaini, R., Laube, J., and Yvon-Lewis, S.: Update on Ozone-Depleting
Substances (ODSs) and Other Gases of Interest to the Montreal Protocol,
chap. 1, in: Scientific Assessment of Ozone Depletion, Global Ozone Research
and Monitoring Project Report, World Meteorological Organization (WMO),
Geneva, Switzerland, 21–125, 2014.
Chave, J., Riéra, B., and Dubois, M.-A.: Estimation of biomass in a
neotropical forest of French Guiana: spatial and temporal variability, J.
Trop. Ecol., 17, 79–96, https://doi.org/10.1017/S0266467401001055, 2001.
Chave, J., Olivier, J., Bongers, F., Châtelet, P., Forget, P.-M., van der
Meer, P., Norden, N., Riéra, B., and Charles-Dominique, P.: Above-ground
biomass and productivity in a rain forest of eastern South America, J. Trop.
Ecol., 24, 355–366, https://doi.org/10.1017/S0266467408005075, 2008.
Czapiewski, K. v., Czuba, E., Huang, L., Ernst, D., Norman, A. L., Koppmann,
R., and Rudolph, J.: Isotopic Composition of Non-Methane Hydrocarbons in
Emissions from Biomass Burning, J. Atmos. Chem., 43, 45–60,
https://doi.org/10.1023/a:1016105030624, 2002.
Danzer, K., Wagner, M., and Fischbacher, C.: Calibration by orthogonal and
common least squares – Theoretical and practical aspects, Fresenius J. Anal.
Chem., 352, 407–412, 1995
DeMore, W. B.: Rate constant ratio for the reactions of hydroxyl with
methane-d and methane, J. Phys. Chem., 97, 8564–8566,
https://doi.org/10.1021/j100135a006, 1993.
Elsner, M., Zwank, L., Hunkeler, D., and Schwarzenbach, R. P.: A New Concept
Linking Observable Stable Isotope Fractionation to Transformation Pathways of
Organic Pollutants, Environ. Sci. Technol., 39, 6896–6916,
https://doi.org/10.1021/es0504587, 2005.
Farquhar, G., O'Leary, M., and Berry, J.: On the Relationship Between Carbon
Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in
Leaves, Funct. Plant Biol., 9, 121–137, https://doi.org/10.1071/PP9820121, 1982.
Feilberg, K. L., Griffith, D. W. T., Johnson, M. S., and Nielsen, C. J.: The
13C and D kinetic isotope effects in the reaction of CH4
with Cl, Int. J. Chem. Kinet., 37, 110–118, https://doi.org/10.1002/kin.20058, 2005.
Food and Agriculture Organization of the United Nations: Global Forest
Resource Assessment 2012, Rome, Italy, ISBN 978-92-5-107292-9, 2012.
Food and Agriculture Organization of the United Nations: Global Forest
Resources Assessment 2015, Rome, Italy, Desk Reference, ISBN
978-92-5-108826-5, 2015.
Gebhardt, S., Colomb, A., Hofmann, R., Williams, J., and Lelieveld, J.:
Halogenated organic species over the tropical South American rainforest,
Atmos. Chem. Phys., 8, 3185–3197, https://doi.org/10.5194/acp-8-3185-2008,
2008.
Gola, A. A., D'Anna, B., Feilberg, K. L., Sellevåg, S. R.,
Bache-Andreassen, L., and Nielsen, C. J.: Kinetic isotope effects in the gas
phase reactions of OH and Cl with CH3Cl, CD3Cl, and
13CH3Cl, Atmos. Chem. Phys., 5, 2395–2402,
https://doi.org/10.5194/acp-5-2395-2005, 2005.
Greule, M., Huber, S. G., and Keppler, F.: Stable hydrogen-isotope analysis
of methyl chloride emitted from heated halophytic plants, Atmos. Environ.,
62, 584–592, https://doi.org/10.1016/j.atmosenv.2012.09.007, 2013.
Hu, L., Yvon-Lewis, S. A., Butler, J. H., Lobert, J. M., and King, D. B.: An
improved oceanic budget for methyl chloride, J. Geophys. Res.-Oceans, 118,
715–725, https://doi.org/10.1029/2012JC008196, 2013.
Jalili, S. and Akhavan, M.: The study of isotope effects of chloroform and
chloromethane using vibrational frequencies, J. Mol. Struct., 765, 105–114,
https://doi.org/10.1016/j.theochem.2006.03.011, 2006.
Kaiser, J., Engel, A., Borchers, R., and Röckmann, T.: Probing
stratospheric transport and chemistry with new balloon and aircraft
observations of the meridional and vertical N2O isotope
distribution, Atmos. Chem. Phys., 6, 3535–3556,
https://doi.org/10.5194/acp-6-3535-2006, 2006.
Kato, R., Tadaki Y., and Ogawa, H.: Plant biomass and growth increment
studies in Pasoh Forest, Malay. Nat. J., 30, 211–224, 1978.
Keppler, F., Harper, D. B., Röckmann, T., Moore, R. M., and Hamilton, J.
T. G.: New insight into the atmospheric chloromethane budget gained using
stable carbon isotope ratios, Atmos. Chem. Phys., 5, 2403–2411,
https://doi.org/10.5194/acp-5-2403-2005, 2005.
Keppler, F., Bahlmann, E., Greule, M., Schöler, H. F., Wittmer, J., and
Zetzsch, C.: Mass spectrometric measurement of hydrogen isotope fractionation
for the reactions of chloromethane with OH and Cl, Atmos. Chem. Phys., 18,
6625–6635, https://doi.org/10.5194/acp-18-6625-2018, 2018.
Köhl, M., Lasco, R., Cifuentes, M., Jonsson, Ö., Korhonen, K. T.,
Mundhenk, P., de Jesus Navar, J., and Stinson, G.: Changes in forest
production, biomass and carbon: Results from the 2015 UN FAO Global Forest
Resource Assessment, Forest Ecol. Manage., 352, 21–34,
https://doi.org/10.1016/j.foreco.2015.05.036, 2015.
Komatsu, D. D., Tsunogai, U., Yamaguchi, J., Nakagawa, F., Yokouchi, Y., and
Nojiri, Y.: The budget of atmospheric methyl chloride using stable carbon
isotopic mass- balance, Poster A51C-0784, AGU Fall Meeting, 13–17 December
2004, San Francisco, USA, 2004.
Lee-Taylor, J. M., Brasseur, G. P., and Yokouchi, Y.: A preliminary
three-dimensional global model study of atmospheric methyl chloride
distributions, J. Geophys. Res., 106, 34221–34233, 2001.
Merrigan, S. R., Le Gloahec, V. N., Smith, J. A., Barton, D. H. R., and
Singleton, D. A.: Separation of the primary and secondary kinetic isotope
effects at a reactive center using starting material reactivities.
Application to the FeCl3-catalyzed oxidation of C-H bonds with
tert-butyl hydroperoxide, Tetrahedron Lett., 40, 3847–3850, 1990.
Miller, L. G., Kalin, R. M., McCauley, S. E., Hamilton, J. T. G., Harper, D.
B., Millet, D. B., Oremland, R. S., and Goldstein, A. H.: Large carbon
isotope fractionation associated with oxidation of methyl halides by
methylotrophic bacteria, P. Natl. Acad. Sci., 98, 5833–5837,
https://doi.org/10.1073/pnas.101129798, 2001.
Miller, L. G., Warner, K. L., Baesman, S. M., Oremland, R. S., McDonald, I.
R., Radajewski, J., and Colin Murell, J.: Degradation of methyl bromide and
methyl chloride in soil microcosms: Use of stable C isotope fractionation and
stable isotope probing to identify reactions and the responsible
microorganisms, Geochim. Cosmochim. Ac., 68, 3271–3283, 2004.
Monzka, S. A., Reimann, S., Engel, A., Krüger, K., O'Doherty, S.,
Sturgres, W. T., Blake, D., Dorf, M., Fraser, P., Froidevaux, L., Jucks, K.,
Kreher, K., Kurylo, M. J., Mellouki, A., Miller, J., Nielsen, O.-J., Orkin,
V. L., Prinn, R. G., Rhew, R., Santee, M. L., Stohl, A., and Verdonik, D.:
Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal
Protocol, chap. 1, in: Scientific Assessment of Ozone Depletion, Global Ozone
Research and Monitoring Project Report, World Meteorological Organization
(WMO), Geneva, Switzerland, Report 52, 2010.
Morgan, C. G., Allen, M., Liang, M. C., Shia, R. L., Blake, G. A., and Yung,
Y. L.: Isotopic fractionation of nitrous oxide in the stratosphere:
Comparison between model and observations, J. Geophys. Res., 109, D04305,
https://doi.org/10.1029/2003JD003402, 2004.
Penman, H. L.: Gas and vapour movements in the soil: I. The diffusion of
vapours through porous solids, J. Agr. Sci., 30, 437–462,
https://doi.org/10.1017/S0021859600048164, 1940.
Pereira Jr., L. R., de Andrade, E. M., Palácio, H. A. d. Q., Raymer, P.
C. L., Filho, C. R., and Pereira, R. S.: Carbon stocks in a tropical dry
forest in Brazil, Revista Ciência Agronômica, 47, 32–40 2016.
Piansawan, T., Saccon, M., Vereecken, L., Gensch, I., and Kiendler-Scharr,
A.: Temperature dependence of stable carbon kinetic isotope effect for the
oxidation reaction of ethane by OH radicals: Experimental and theoretical
studies, J. Geophys. Res.-Atmos., 122, 8310–8324, https://doi.org/10.1002/2017JD026950,
2017.
Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M.,
Alyea, F. N., O'Doherty, S., Salameh, P., Miller, B. R., Huang, J., Wang, R.
H. J., Hartley, D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P.
M., and McCulloch, A.: A history of chemically and radiatively important
gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res.-Atmos., 105,
17751–17792, https://doi.org/10.1029/2000JD900141, 2000.
Redeker, K. R. and Kalin, R. M.: Methyl chloride isotopic signatures from
Irish forest soils and a comparison between abiotic and biogenic methyl
halide soil fluxes, Glob. Change Biol., 18, 1453–1467,
https://doi.org/10.1111/j.1365-2486.2011.02600.x, 2012.
Redeker, K. R., Davis, S., and Kalin, R. M.: Isotope values of atmospheric
halocarbons and hydrocarbons from Irish urban, rural, and marine locations,
J. Geophys. Res.-Atmos., 112, D16307, https://doi.org/10.1029/2006JD007784, 2007.
Rudolph, J., Czuba, E., and Huang, L.: The stable carbon isotope
fractionation for reactions of selected hydrocarbons with OH-radicals and its
relevance for atmospheric chemistry, J. Geophys. Res.-Atmos., 105,
29329–29346, https://doi.org/10.1029/2000JD900447, 2000.
Saatchi, S. S., Houghton, R. A., Dos Santos Alvalá, R. C., Soares, J. V.,
and Yu, Y.: Distribution of aboveground live biomass in the Amazon basin,
Glob. Change Biol., 13, 816–837, https://doi.org/10.1111/j.1365-2486.2007.01323.x,
2007.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108,
9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Saito, T. and Yokouchi, Y.: Stable carbon isotope ratio of methyl chloride
emitted from glasshouse-grown tropical plants and its implication for the
global methyl chloride budget, Geophys. Res. Lett., 35, L08807,
https://doi.org/10.1029/2007GL032736, 2008.
Saito, T., Yokouchi, Y., Kosugi, Y., Tani, M., Philip, E., and Okuda, T.:
Methyl chloride and isoprene emissions from tropical rain forest in Southeast
Asia, Geophys. Res. Lett., 35, L19812, https://doi.org/10.1029/2008GL035241, 2008.
Saito, T., Yokouchi, Y., Phillip, E., and Okuda, T.: Bidirectional exchange
of methyl halides between tropical plants and the atmosphere, Geophys. Res.
Lett., 40, 5300–5304, https://doi.org/10.1002/grl.50997, 2013.
Saltzman, E. S., Aydin, M., De Bruyn, W. J., King, D. B., and Yvon-Lewis, S.
A.: Methyl bromide in preindustrial air: Measurements from an Antarctic ice
core, J. Geophys. Res.-Atmos., 109, D05301, https://doi.org/10.1029/2003JD004157, 2004.
Sapart, C. J., Monteil, G., Prokopiou, M., van de Wal, R. S. W., Kaplan, J.
O., Sperlich, P., Krumhardt, K. M., van der Veen, C., Houweling, S., Krol, M.
C., Blunier, T., Sowers, T., Martinerie, P., Witrant, E., Dahl-Jensen, D.,
and Röckmann, T.: Natural and anthropogenic variations in methane sources
during the past two millennia, Nature, 490, 85–88,
https://doi.org/10.1038/nature11461, 2012.
Saueressig, G., Bergamaschi, P., Crowley, J. N., Fischer, H., and Harris, G.
W.: Carbon kinetic isotope effect in the reaction of CH4 with Cl
atoms, Geophys. Res. Lett., 22, 1225–1228, https://doi.org/10.1029/95GL00881, 1995.
Saueressig, G., Crowley, J. N., Bergamaschi, P., Brühl, C.,
Brenninkmeijer, C. A. M., and Fischer, H.: Carbon 13 and D kinetic isotope
effects in the reactions of CH4 with O(1D) and OH: New
laboratory measurements and their implications for the isotopic composition
of stratospheric methane, J. Geophys. Res.-Atmos., 106, 23127–23138,
https://doi.org/10.1029/2000JD000120, 2001.
Sellevåg, S. R., Nyman, G., and Nielsen, C. J.: Study of the Carbon-13
and Deuterium Kinetic Isotope Effects in the Cl and OH Reactions of
CH4 and CH3Cl, J. Phys. Chem. A, 110, 141–152,
https://doi.org/10.1021/jp0549778, 2006.
Shorter, J. H., Kolb, C. E., Crill, P. M., Kerwin, R. A., Talbot, R. W.,
Hines, M. E., and Harriss, R. C.: Rapid degradation of atmospheric methyl
bromide in soils, Nature, 377, 717–719, https://doi.org/10.1038/377717a0, 1995.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J.,
Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C.,
Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999JD901006, 2000.
Tans, P. P.: A note on isotopic ratios and the global atmospheric methane
budget, Global Biogeochemical Cycles, 11, 77-81, https://doi.org/10.1029/96GB03940,
1997.
Thompson, A. E., Anderson, R. S., Rudolph, J., and Huang, L.: Stable carbon
isotope signatures of background tropospheric chloromethane and CFC113,
Biogeochemistry, 60, 191–211, https://doi.org/10.1023/a:1019820208377, 2002.
Trudinger, C. M., Etheridge, D. M., Sturrock, G. A., Fraser, P. J., Krummel,
P. B., and McCulloch, A.: Atmospheric histories of halocarbons from analysis
of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and
dichloromethane, J. Geophys. Res.-Atmos., 109, D22310,
https://doi.org/10.1029/2004JD004932, 2004.
Tsunogai, U., Yoshida, N., and Gamo, T.: Carbon isotopic compositions of
C2–C5 hydrocarbons and methyl chloride in urban, coastal, and maritime
atmospheres over the western North Pacific, J. Geophys. Res.-Atmos., 104,
16033–16039, https://doi.org/10.1029/1999JD900217, 1999.
Tyler, S. C., Ajie, H. O., Rice, A. L., Cicerone, R. J., and Tuazon, E. C.:
Experimentally determined kinetic isotope effects in the reaction of
CH4 with Cl: Implications for atmospheric CH4, Geophys.
Res. Lett., 27, 1715–1718, https://doi.org/10.1029/1999GL011168, 2000.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Weinberg, I., Bahlmann, E., Eckhardt, T., Michaelis, W., and Seifert, R.: A
halocarbon survey from a seagrass dominated subtropical lagoon, Ria Formosa
(Portugal): flux pattern and isotopic composition, Biogeosciences, 12,
1697–1711, https://doi.org/10.5194/bg-12-1697-2015, 2015.
Wittmer, J., Bleicher, S., and Zetzsch, C.: Iron(III)-Induced Activation of
Chloride and Bromide from Modeled Salt Pans, J. Phys. Chem. A, 119,
4373–4385, https://doi.org/10.1021/jp508006s, 2015.
Xiao, X., Prinn, R. G., Fraser, P. J., Weiss, R. F., Simmonds, P. G.,
O'Doherty, S., Miller, B. R., Salameh, P. K., Harth, C. M., Krummel, P. B.,
Golombek, A., Porter, L. W., Butler, J. H., Elkins, J. W., Dutton, G. S.,
Hall, B. D., Steele, L. P., Wang, R. H. J., and Cunnold, D. M.: Atmospheric
three-dimensional inverse modeling of regional industrial emissions and
global oceanic uptake of carbon tetrachloride, Atmos. Chem. Phys., 10,
10421–10434, https://doi.org/10.5194/acp-10-10421-2010, 2010.
Yamakura, T., Hagihara, A., Sukardjo, S., and Ogawa, H.: Aboveground biomass
of tropical rain forest stands in Indonesian Borneo, Vegetatio, 68, 71–82,
available at: https://link.springer.com/article/10.1007/BF00045057
(last access: 4 February 2019), 1986.
Yokouchi, Y., Noijiri, Y., Barrie, L. A., Toom-Sauntry, D., Machida, T.,
Inuzuka, Y., Akimoto, H., Li, H. J., Fujinuma, Y., and Aoki, S.: A strong
source of methyl chloride to the atmosphere from tropical coastal land,
Nature, 403, 295–298, https://doi.org/10.1038/35002049, 2000.
Yokouchi, Y., Ikeda, M., Inuzuka, Y., and Yukawa, T.: Strong emission of
methyl chloride from tropical plants, Nature, 416, 163–165, 2002.
Yoshida, Y., Wang, Y., Shim, C., Cunnold, D., Blake, D. R., and Dutton, G.
S.: Inverse modeling of the global methyl chloride sources, J. Geophys.
Res.-Atmos., 111, D16307, https://doi.org/10.1029/2005JD006696, 2006.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous
dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082,
https://doi.org/10.5194/acp-3-2067-2003, 2003.
Short summary
Chloromethane is the most important natural carrier of chlorine to the stratosphere. From a newly determined carbon isotope effect of −11.2 ‰ for the tropospheric loss of CH3Cl we derive a tropical rainforest CH3Cl source of 670 ± 200 Gg a−1, 60 % smaller than previous estimates. A revision of previous bottom-up estimates using above-ground biomass instead of rainforest area strongly supports this lower estimate. Our results suggest a large unknown tropical value of 1530 ± 200 Gg a−1.
Chloromethane is the most important natural carrier of chlorine to the stratosphere. From a...
Altmetrics
Final-revised paper
Preprint