Blowers, P. and Hollingshead, K.: Estimations of global warming potentials
from computational chemistry calculations for CH
2F
2 and other
fluorinated methyl species verified by comparison to experiment, J. Phys.
Chem. A, 113, 5942–5950, https://doi.org/10.1021/jp8114918, 2009.
Bravo, I., Aranda, A., Hurley, M. D., Marston, G., Nutt, D. R., Shine, K.
P., Smith, K., and Wallington, T. J.: Infrared absorption spectra, radiative
efficiencies, and global warming potentials of perfluorocarbons: comparison
between experiment and theory, J. Geophys. Res., 115, D24317,
https://doi.org/10.1029/2010JD014771, 2010.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E.,
Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
“Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
Evaluation No. 18”, JPL Publication 15–10, Jet Propulsion Laboratory,
Pasadena, 2015, available at:
http://jpldataeval.jpl.nasa.gov, 2015.
Carnimeo, I., Puzzarini, C., Tasinato, N., Stoppa, P., Pietropolli Charmet,
A., Biczysko, M., Cappelli, C., and Barone, V.: Anharmonic theoretical
simulations of infrared spectra of halogenated organic compounds, J. Chem.
Phys., 139, 074310, https://doi.org/10.1063/1.4817401, 2013.
Charmet, P. A., Stoppa, P., Tasinato, N., Giorgianni, S., Barone, V.,
Biczysko, M., Bloino, J., Cappelli, C., Carnimeo, I., and Puzzarini, C.: An
integrated experimental and quantum-chemical investigation on the
vibrational spectra of chlorofluoromethane, J. Chem. Phys., 139, 164302,
https://doi.org/10.1063/1.4825380, 2013.
DeMore, W. B.: Experimental and Estimated Rate Constants for the Reactions
of Hydroxyl Radicals with Several Halocarbons, J. Phys. Chem., 100,
5813–5820, https://doi.org/10.1021/jp953216+, 1996.
Engel, A., Bönisch, H., Ostermöller, J., Chipperfield, M., Dhomse, S.,
and Jöckel, P.: A refined method for calculating equivalent effective
stratospheric chlorine, Atmos. Chem. Phys., 18, 601–619,
https://doi.org/10.5194/acp-18-601-2018, 2018.
Etminan, M., Highwood, E. J., Laube, J. C., McPheat, R., Marston, G., Shine,
K. P., and Smith, K. M.: Infrared absorption spectra, radiative
efficiencies, and global warming potentials of newly-detected halogenated
compounds: CFC-113a, CFC-112 and HCFC-133a, Atmosphere, 5, 473–483,
https://doi.org/10.3390/atmos5030473, 2014.
Halls, M. D. and Schlegel, H. B.: Comparison of the performance of local,
gradient-corrected, and hybrid density functional models in predicting
infrared intensities, J. Chem. Phys., 109, 10587–10593,
doi;10.1063/1.476518, 1998.
Hodnebrog, Ø., Etminan, M., Fuglestvedt, J. S., Marston, G., Myhre, G.,
Nielsen, C. J., Shine, K. P., and Wallington, T. J.: Global warming
potentials and radiative efficiencies of halocarbons and related compounds:
A comprehensive review, Rev. Geophys., 51, 300–378, https://doi.org/10.1002/rog.20013, 2013.
Hout, R. F., Levi, B. A., and Hehre, W. J.: Effect of electron correlation
on theoretical vibrational frequencies, J. Comput. Chem., 3, 234–250,
https://doi.org/10.1002/jcc.540030216, 1982.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group 1 to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Zia, Y., Bex, V., and Midgley, P.
M., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA., 2013.
Jiménez-Hoyos, C. A., Janesko, B. G., and Scuseria, G. E.: Evaluation of
range-separated hybrid density functionals for the prediction of vibrational
frequencies, infrared intensities, and Raman activities, Phys. Chem. Chem.
Phys., 10, 6621–6629, https://doi.org/10.1039/b810877c, 2008.
Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von
Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, N. R., Friedrich, T.,
Frölicher, T. L., Halloran, P. R., Holden, P. B., Jones, C., Kleinen,
T., Mackenzie, F. T., Matsumoto, K., Meinshausen, M., Plattner, G.-K.,
Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann,
K., Tanaka, K., Timmermann, A., and Weaver, A. J.: Carbon dioxide and
climate impulse response functions for the computation of greenhouse gas
metrics: a multi-model analysis, Atmos. Chem. Phys., 13, 2793–2825,
https://doi.org/10.5194/acp-13-2793-2013, 2013.
Katsyuba, S. A., Zvereva, E. E., and Burganov, T. I.: Is there a simple way
to reliable simulations of infrared spectra of organic compounds?, J. Phys.
Chem. A, 117, 6664–6670, https://doi.org/10.1021/jp404574m, 2013.
Kazakov, A., McLinden, M. O., and Frenkel, M.: Computational design of new
refrigerant fluids based on environmental, safety,
and thermodynamic
characteristics, Ind. Chem. Eng. Res., 51, 12537–12548,
https://doi.org/10.1021/ie3016126, 2012.
Ko, M. K. W., Newman, P. A., Reimann, S., Strahan, S. E., Plumb, R. A.,
Stolarski, R. S., Burkholder, J. B., Mellouki, W., Engel, A., Atlas, E. L.,
Chipperfield, M., and Liang, Q.: Lifetimes of stratospheric ozone-depleting
substances, their replacements, and related species,
available at:
http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-6/ (last access: May 2018) 2013.
Kwok, E. S. C. and Atkinson, R.: Estimation of hydroxyl radical reaction
rate constants for gas-phase organic compounds using a structure-reactivity
relationship: An update, Atmos. Environ., 29, 1685–1695, 1995.
Leedham Elvidge, E., Bönisch, H., Brenninkmeijer, C. A. M., Engel, A.,
Fraser, P. J., Gallacher, E., Langenfelds, R., Mühle, J., Oram, D. E.,
Ray, E. A., Ridley, A. R., Röckmann, T., Sturges, W. T., Weiss, R. F.,
and Laube, J. C.: Evaluation of stratospheric age of air from CF
4,
C
2F
6, C
3F
8, CHF
3, HFC-125, HFC-227ea and SF
6;
implications for the calculations of halocarbon lifetimes, fractional
release factors and ozone depletion potentials, Atmos. Chem. Phys., 18,
3369–3385, https://doi.org/10.5194/acp-18-3369-2018, 2018.
Lindenmaier, R., Williams, S. D., Sams, R. L., and Johnson, T. J.:
Quantitative infrared absorption spectra and vibrational assignments of
crotonaldehyde and methyl vinyl ketone using gas-phase mid-infrared,
far-infrared, and liquid raman spectra:
s-cis vs
s-trans composition confirmed via
temperature studies and
ab initio methods, J. Phys. Chem. A, 121, 1195–1212,
https://doi.org/10.1021/acs.jpca.6b10872, 2017.
McGillen, M. R., Bernard, F., Fleming, E. L., and Burkholder, J. B.:
HCFC-133a (CF
3CH
2Cl): OH rate coefficient, UV and infrared
absorption spectra, and atmospheric implications, Geophys. Res. Lett., 42,
6098–6105, https://doi.org/10.1002/2015GL064939, 2015.
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of
radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett.,
25, 2715–2718, https://doi.org/10.1029/98GL01908, 1998.
Orkin, V. L., Guschin, A. G., Larin, I. K., Huie, R. E., and Kurylo, M. J.:
Measurements of the infrared absorption cross-sections of haloalkanes and
their use in a simplified calculational approach for estimating direct
global warming potentials, J. Photochem. Photobiol. A-Chem., 157, 211–222,
2003.
Ostermöller, J., Bönisch, H., Jöckel, P., and Engel, A.: A new
time-independent formulation of fractional release, Atmos. Chem. Phys., 17,
3785–3797, https://doi.org/10.5194/acp-17-3785-2017, 2017a.
Ostermöller, J., Bönisch, H., Jöckel, P., and Engel, A.: Corrigendum to
“A new time-independent formulation of fractional release” published in
Atmos. Chem. Phys., 17, 3785–3797, Atmos. Chem. Phys., 17, 3785–3797,
https://doi.org/10.5194/acp-17-3785-2017-corrigendum, 2017b.
Papadimitriou, V. C. and Burkholder, J. B.: OH radical reaction rate
coefficients, infrared spectrum, and global warming potential of
(CF
3)2CFCH
=CHF (HFO-1438ezy(
E)), J. Phys. Chem. A, 120,
6618–6628, https://doi.org/10.1021/acs.jpca.6b06096, 2016.
Papadimitriou, V. C., Portmann, R. W., Fahey, D. W., Mühle, J., Weiss,
R. F., and Burkholder, J. B.: Experimental and theoretical study of the
atmospheric chemistry and global warming potential of SO
2F
2, J.
Phys. Chem. A, 112, 12657–12666, https://doi.org/10.1021/jp806368u, 2008a.
Papadimitriou, V. C., Talukdar, R. K., Portmann, R. W., Ravishankara, A. R.,
and Burkholder, J. B.: CF
3CF
=CH
2 and (Z)-CF
3CF
=CHF:
temperature dependent OH rate coefficients and global warming potentials,
Phys. Chem. Chem. Phys., 10, 808–820, https://doi.org/10.1039/b714382f, 2008b.
Pople, J. A., Schlegel, H. B., Krishnan, R., Defrees, D. J., Binkley, J. S.,
Frisch, M. J., Whiteside, R. A., Hout, R. F., and Hehre, W. J.: Molecular
orbital studies of vibrational frequencies, Int. J. Quantum Chem., 20,
269–278, https://doi.org/10.1002/qua.560200829, 1981.
Scott, A. P. and Radom, L.: Harmonic vibrational frequencies: An evaluation
of Hartree-Fock, Møller-Plesset, quadratic configuration interaction,
density functional theory, and semiempirical scale factors, J. Phys. Chem.,
100, 16502–16513, https://doi.org/10.1021/jp960976r, 1996.
Sharpe, S. W., Johnson, T. J., Sams, R. L., Chu, P. M., Rhoderick, G. C.,
and Johnson, P. A.: Gas-phase databases for quantitative infrared
spectroscopy, Appl. Spect., 58, 1452–1461, 2004.
Sihra, K., Hurley, M. D., Shine, K. P., and Wallington, T. J.: Updated
radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons,
J. Geophys. Res., 106, 20493–20505, 2001.
Solomon, S. and Albritton, D. L.: Time-dependent ozone depletion potentials
for short- and long-term forecasts, Nature, 357, 33–37, https://doi.org/10.1038/357033a0, 1992.
Wallington, T. J., Pivesso, B. P., Lira, A. M., Anderson, J. E., Nielsen, C.
J., Andersen, N. H., and Hodnebrog, Ø.: CH
3Cl, CH
2Cl
2,
CHCl
3, and CCl
4: Infrared spectra, radiative efficiencies, and
global warming potentials, J. Quant. Spec. Rad. Trans., 174, 56–64,
https://doi.org/10.1016/j.jqsrt.2016.01.029, 2016.
Williams, S. D., Johnson, T. J., Sharpe, S. W., Yavelak, V., Oates, R. P.,
and Brauer, C. S.: Quantitative vapor-phase IR intensities and DFT
computations to predict absolute IR spectra based on molecular structure:
I.
Alkanes, J. Quant. Spectrosc. Radiat. Trans., 129, 298–307,
https://doi.org/10.1016/j.jqsrt.2013.07.005, 2013.