Articles | Volume 18, issue 6
https://doi.org/10.5194/acp-18-4329-2018
https://doi.org/10.5194/acp-18-4329-2018
Research article
 | 
28 Mar 2018
Research article |  | 28 Mar 2018

A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air–sea exchange and the multi-year MACC composition reanalysis

Ashok K. Luhar, Matthew T. Woodhouse, and Ian E. Galbally

Related authors

Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1363,https://doi.org/10.5194/egusphere-2024-1363, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Radiative impact of improved global parameterisations of oceanic dry deposition of ozone and lightning-generated NOx
Ashok K. Luhar, Ian E. Galbally, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 13013–13033, https://doi.org/10.5194/acp-22-13013-2022,https://doi.org/10.5194/acp-22-13013-2022, 2022
Short summary
Assessing and improving cloud-height-based parameterisations of global lightning flash rate, and their impact on lightning-produced NOx and tropospheric composition in a chemistry–climate model
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Nathan Luke Abraham
Atmos. Chem. Phys., 21, 7053–7082, https://doi.org/10.5194/acp-21-7053-2021,https://doi.org/10.5194/acp-21-7053-2021, 2021
Short summary
Quantifying methane emissions from Queensland's coal seam gas producing Surat Basin using inventory data and a regional Bayesian inversion
Ashok K. Luhar, David M. Etheridge, Zoë M. Loh, Julie Noonan, Darren Spencer, Lisa Smith, and Cindy Ong
Atmos. Chem. Phys., 20, 15487–15511, https://doi.org/10.5194/acp-20-15487-2020,https://doi.org/10.5194/acp-20-15487-2020, 2020
Short summary
An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate–chemistry model
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Marcus Thatcher
Atmos. Chem. Phys., 17, 3749–3767, https://doi.org/10.5194/acp-17-3749-2017,https://doi.org/10.5194/acp-17-3749-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024,https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024,https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024,https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024,https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024,https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary

Cited articles

Bariteau, L., Helmig, D., Fairall, C. W., Hare, J. E., Hueber, J., and Lang, E. K.: Determination of oceanic ozone deposition by ship-borne eddy covariance flux measurements, Atmos. Meas. Tech., 3, 441–455, https://doi.org/10.5194/amt-3-441-2010, 2010.
Carpenter, L. J. and Nightingale, P. D.: Chemistry and release of gases from the surface ocean, Chem. Rev., 115, 4015–4034, https://doi.org/10.1021/cr5007123, 2015.
Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W., Parthipan, R., Wilson, J., and Plane, J. M. C.: Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine, Nat. Geosci., 6, 108–111, https://doi.org/10.1038/NGEO1687, 2013.
Download
Short summary
Dry deposition at the Earth’s surface is an important sink of atmospheric ozone. A new parameterisation for ozone dry deposition to the ocean that accounts for relevant chemical and physical processes is developed and tested. It results in an ocean deposition loss that is only about a third of the current model estimates and corresponds to an increase of 5 % in the tropospheric ozone burden. This is important for tropospheric ozone budget, associated radiative forcing, and ozone mixing ratios.
Altmetrics
Final-revised paper
Preprint