Articles | Volume 18, issue 23
https://doi.org/10.5194/acp-18-17119-2018
https://doi.org/10.5194/acp-18-17119-2018
Research article
 | 
04 Dec 2018
Research article |  | 04 Dec 2018

On the thermodynamic and kinetic aspects of immersion ice nucleation

Donifan Barahona

Related authors

Earth system model parameter adjustment using a Green's functions approach
Ehud Strobach, Andrea Molod, Donifan Barahona, Atanas Trayanov, Dimitris Menemenlis, and Gael Forget
Geosci. Model Dev., 15, 2309–2324, https://doi.org/10.5194/gmd-15-2309-2022,https://doi.org/10.5194/gmd-15-2309-2022, 2022
Short summary
The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model
Huisheng Bian, Eunjee Lee, Randal D. Koster, Donifan Barahona, Mian Chin, Peter R. Colarco, Anton Darmenov, Sarith Mahanama, Michael Manyin, Peter Norris, John Shilling, Hongbin Yu, and Fanwei Zeng
Atmos. Chem. Phys., 21, 14177–14197, https://doi.org/10.5194/acp-21-14177-2021,https://doi.org/10.5194/acp-21-14177-2021, 2021
Short summary
Effect of volcanic emissions on clouds during the 2008 and 2018 Kilauea degassing events
Katherine H. Breen, Donifan Barahona, Tianle Yuan, Huisheng Bian, and Scott C. James
Atmos. Chem. Phys., 21, 7749–7771, https://doi.org/10.5194/acp-21-7749-2021,https://doi.org/10.5194/acp-21-7749-2021, 2021
Short summary
Linkage among ice crystal microphysics, mesoscale dynamics, and cloud and precipitation structures revealed by collocated microwave radiometer and multifrequency radar observations
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020,https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018,https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 23, 1785–1801, https://doi.org/10.5194/acp-23-1785-2023,https://doi.org/10.5194/acp-23-1785-2023, 2023
Short summary
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023,https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023,https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023,https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023,https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary

Cited articles

Adam, G. and Gibbs, J. H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys., 43, 139–146, 1965. a, b
Alpert, P. A., Aller, J. Y., and Knopf, D. A.: Ice nucleation from aqueous NaCl droplets with and without marine diatoms, Atmos. Chem. Phys., 11, 5539–5555, https://doi.org/10.5194/acp-11-5539-2011, 2011. a, b, c
Anderson, D. M.: Ice nucleation and the substrate-ice interface, Nature, 216, 563–566, https://doi.org/10.1038/216563a0, 1967. a, b, c
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust inmixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. a
Baker, M. and Baker, M.: A new look at homogeneous freezing of water, Geophys. Res. Lett., 31, L19102, https://doi.org/10.1029/2004GL020483, 2004. a, b, c, d
Download
Short summary
This work develops a model for ice formation mediated by particles immersed within droplets. Ice nucleation is not only enhanced by the modification of the thermodynamic properties of the vicinal water but is also inhibited by decreased water mobility near the particle. The ice nucleation rate is thus determined by competing kinetic and thermodynamic factors during ice formation. A new regime where ice nucleation is mediated mainly by kinetics instead of thermodynamics is discovered.
Altmetrics
Final-revised paper
Preprint