Articles | Volume 18, issue 19
https://doi.org/10.5194/acp-18-14609-2018
https://doi.org/10.5194/acp-18-14609-2018
Research article
 | 
12 Oct 2018
Research article |  | 12 Oct 2018

Simulation of heterogeneous photooxidation of SO2 and NOx in the presence of Gobi Desert dust particles under ambient sunlight

Zechen Yu and Myoseon Jang

Related authors

CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024,https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys., 22, 9083–9098, https://doi.org/10.5194/acp-22-9083-2022,https://doi.org/10.5194/acp-22-9083-2022, 2022
Short summary
Simulation of SOA formation from the photooxidation of monoalkylbenzenes in the presence of aqueous aerosols containing electrolytes under various NOx levels
Chufan Zhou, Myoseon Jang, and Zechen Yu
Atmos. Chem. Phys., 19, 5719–5735, https://doi.org/10.5194/acp-19-5719-2019,https://doi.org/10.5194/acp-19-5719-2019, 2019
Short summary
Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2
Zechen Yu, Myoseon Jang, and Jiyeon Park
Atmos. Chem. Phys., 17, 10001–10017, https://doi.org/10.5194/acp-17-10001-2017,https://doi.org/10.5194/acp-17-10001-2017, 2017
Short summary
Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels
Huanhuan Jiang, Myoseon Jang, and Zechen Yu
Atmos. Chem. Phys., 17, 9965–9977, https://doi.org/10.5194/acp-17-9965-2017,https://doi.org/10.5194/acp-17-9965-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024,https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024,https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024,https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024,https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024,https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary

Cited articles

Abdelkader, M., Metzger, S., Steil, B., Klingmuller, K., Tost, H., Pozzer, A., Stenchikov, G., Barrie, L., and Lelieveld, J.: Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes, Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, 2017. 
Afshar, S., Jahromi, H. S., Jafari, N., Ahmadi, Z., and Hakamizadeh, M.: Degradation of malachite green oxalate by UV and visible lights irradiation using Pt/TiO2/SiO2 nanophotocatalyst, Sci. Iran, 18, 772–779, https://doi.org/10.1016/j.scient.2011.06.007, 2011. 
Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007, 2007. 
Beardsley, R. L., and Jang, M.: Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics, Atmos. Chem. Phys., 16, 5993–6009, https://doi.org/10.5194/acp-16-5993-2016, 2016. 
Beardsley, R. L., Jang, M., Ori, B., Im, Y., Delcomyn, C. A., and Witherspoon, N.: Role of sea salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties, Environ. Chem., 10, 167–177, https://doi.org/10.1071/En13016, 2013. 
Download
Short summary
Large quantities of mineral dust particles are ejected into the ambient atmosphere during wind storms. These authentic dust particles can transport to polluted regions, such as industrial areas in cities, and undergo atmospheric chemical and physical processes. The Atmospheric Mineral Aerosol Reaction model developed through this work can help explain the impact of authentic mineral dust particles on local and regional air qualities.
Altmetrics
Final-revised paper
Preprint