Articles | Volume 17, issue 21
https://doi.org/10.5194/acp-17-13017-2017
https://doi.org/10.5194/acp-17-13017-2017
Research article
 | 
06 Nov 2017
Research article |  | 06 Nov 2017

Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle

Marie Mazoyer, Christine Lac, Odile Thouron, Thierry Bergot, Valery Masson, and Luc Musson-Genon

Related authors

High sensitivity of simulated fog properties to parameterized aerosol activation in case studies from ParisFog
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376,https://doi.org/10.5194/egusphere-2024-3376, 2024
Short summary
Adiabatic and radiative cooling are both important causes of aerosol activation in simulated fog events in Europe
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397,https://doi.org/10.5194/egusphere-2024-3397, 2024
Short summary
Experimental study on the evolution of droplet size distribution during the fog life cycle
Marie Mazoyer, Frédéric Burnet, and Cyrielle Denjean
Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5194/acp-22-11305-2022,https://doi.org/10.5194/acp-22-11305-2022, 2022
Short summary
Experimental study of the aerosol impact on fog microphysics
Marie Mazoyer, Frédéric Burnet, Cyrielle Denjean, Gregory C. Roberts, Martial Haeffelin, Jean-Charles Dupont, and Thierry Elias
Atmos. Chem. Phys., 19, 4323–4344, https://doi.org/10.5194/acp-19-4323-2019,https://doi.org/10.5194/acp-19-4323-2019, 2019
Short summary
Experimental study of the aerosol impact on fog microphysics
M. Mazoyer, F. Burnet, G. C. Roberts, M. Haeffelin, J.-C Dupont, and T. Elias
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-103,https://doi.org/10.5194/acp-2016-103, 2016
Preprint withdrawn
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Assessing glaciogenic seeding impacts in Australia's Snowy Mountains: an ensemble modeling approach
Sisi Chen, Lulin Xue, Sarah A. Tessendorf, Thomas Chubb, Andrew Peace, Suzanne Kenyon, Johanna Speirs, Jamie Wolff, and Bill Petzke
Atmos. Chem. Phys., 25, 6703–6724, https://doi.org/10.5194/acp-25-6703-2025,https://doi.org/10.5194/acp-25-6703-2025, 2025
Short summary
How the representation of microphysical processes affects tropical condensate in the global storm-resolving model ICON
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
Atmos. Chem. Phys., 25, 6429–6444, https://doi.org/10.5194/acp-25-6429-2025,https://doi.org/10.5194/acp-25-6429-2025, 2025
Short summary
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025,https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud droplet number concentration
Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier
Atmos. Chem. Phys., 25, 6121–6139, https://doi.org/10.5194/acp-25-6121-2025,https://doi.org/10.5194/acp-25-6121-2025, 2025
Short summary

Cited articles

Aumond, P., Masson, V., Lac, C., Gauvreau, B., Dupont, S., and Berengier, M.: Including the drag effects of canopies: real case large-eddy simulation studies, Bound.-Lay. Meteorol., 146, 65–80, 2013.
Baba, Y. and Takahashi, K.: Weighted essentially non-oscillatory scheme for cloud edge problem, Q. J. Roy. Meteor. Soc., 139, 1374–1388, 2013.
Beare, R. J. and MacVean, M. K.: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer, Bound.-Lay. Meteorol., 112, 257–281, 2004.
Bergot, T.: Small-scale structure of radiation fog: a large-eddy simulation study, Q. J. Roy. Meteor. Soc., 139, 1099–1112, 2013.
Bergot, T.: Large Eddy Simulation study of the dissipation of radiation fog, Q. J. Roy. Meteor. Soc., 142, 1029–1040, 2015.
Download
Short summary
Large eddy simulations of a radiation fog event occurring during the ParisFog experiment have been studied to analyze the impact of the dynamics on the fog life cycle. They included a sophisticated microphysical scheme, the drag effect of a trees barrier and deposition on vegetation. The blocking effect of the trees induces elevated fog formation and limits cooling and cloud water production. The deposition process was found to exert the most significant impact on the fog prediction.
Share
Altmetrics
Final-revised paper
Preprint