Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
Large eddy simulations of a radiation fog event occurring during the ParisFog experiment have been studied to analyze the impact of the dynamics on the fog life cycle. They included a sophisticated microphysical scheme, the drag effect of a trees barrier and deposition on vegetation. The blocking effect of the trees induces elevated fog formation and limits cooling and cloud water production. The deposition process was found to exert the most significant impact on the fog prediction.
Altmetrics
Final-revised paper
Preprint
Articles | Volume 17, issue 21
Atmos. Chem. Phys., 17, 13017–13035, 2017
https://doi.org/10.5194/acp-17-13017-2017
Atmos. Chem. Phys., 17, 13017–13035, 2017
https://doi.org/10.5194/acp-17-13017-2017

Research article 06 Nov 2017

Research article | 06 Nov 2017

Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle

Marie Mazoyer et al.

Related authors

Hectometric-scale simulations of a Mediterranean heavy-precipitation event during the Hydrological cycle in the Mediterranean Experiment (HyMeX) first Special Observation Period (SOP1)
Olivier Nuissier, Fanny Duffourg, Maxime Martinet, Véronique Ducrocq, and Christine Lac
Atmos. Chem. Phys., 20, 14649–14667, https://doi.org/10.5194/acp-20-14649-2020,https://doi.org/10.5194/acp-20-14649-2020, 2020
Short summary
Multi-layer coupling between SURFEX-TEB-v9.0 and Meso-NH-v5.3 for modelling the urban climate of high-rise cities
Robert Schoetter, Yu Ting Kwok, Cécile de Munck, Kevin Ka Lun Lau, Wai Kin Wong, and Valéry Masson
Geosci. Model Dev., 13, 5609–5643, https://doi.org/10.5194/gmd-13-5609-2020,https://doi.org/10.5194/gmd-13-5609-2020, 2020
Short summary
An urban trees parameterization for modeling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0)
Emilie Redon, Aude Lemonsu, and Valéry Masson
Geosci. Model Dev., 13, 385–399, https://doi.org/10.5194/gmd-13-385-2020,https://doi.org/10.5194/gmd-13-385-2020, 2020
Short summary
Implementation of an immersed boundary method in the Meso-NH v5.2 model: applications to an idealized urban environment
Franck Auguste, Géraldine Réa, Roberto Paoli, Christine Lac, Valery Masson, and Daniel Cariolle
Geosci. Model Dev., 12, 2607–2633, https://doi.org/10.5194/gmd-12-2607-2019,https://doi.org/10.5194/gmd-12-2607-2019, 2019
Short summary
Improvements to the hydrological processes of the Town Energy Balance model (TEB-Veg, SURFEX v7.3) for urban modelling and impact assessment
Xenia Stavropulos-Laffaille, Katia Chancibault, Jean-Marc Brun, Aude Lemonsu, Valéry Masson, Aaron Boone, and Hervé Andrieu
Geosci. Model Dev., 11, 4175–4194, https://doi.org/10.5194/gmd-11-4175-2018,https://doi.org/10.5194/gmd-11-4175-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021,https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles
Benjamin J. Murray, Kenneth S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021,https://doi.org/10.5194/acp-21-665-2021, 2021
Short summary
On the ice-nucleating potential of warm hydrometeors in mixed-phase clouds
Michael Krayer, Agathe Chouippe, Markus Uhlmann, Jan Dušek, and Thomas Leisner
Atmos. Chem. Phys., 21, 561–575, https://doi.org/10.5194/acp-21-561-2021,https://doi.org/10.5194/acp-21-561-2021, 2021
Short summary
The enhancement of droplet collision by electric charges and atmospheric electric fields
Shian Guo and Huiwen Xue
Atmos. Chem. Phys., 21, 69–85, https://doi.org/10.5194/acp-21-69-2021,https://doi.org/10.5194/acp-21-69-2021, 2021
Short summary
Cloud adjustments dominate the overall negative aerosol radiative effects of biomass burning aerosols in UKESM1 climate model simulations over the south-eastern Atlantic
Haochi Che, Philip Stier, Hamish Gordon, Duncan Watson-Parris, and Lucia Deaconu
Atmos. Chem. Phys., 21, 17–33, https://doi.org/10.5194/acp-21-17-2021,https://doi.org/10.5194/acp-21-17-2021, 2021
Short summary

Cited articles

Aumond, P., Masson, V., Lac, C., Gauvreau, B., Dupont, S., and Berengier, M.: Including the drag effects of canopies: real case large-eddy simulation studies, Bound.-Lay. Meteorol., 146, 65–80, 2013.
Baba, Y. and Takahashi, K.: Weighted essentially non-oscillatory scheme for cloud edge problem, Q. J. Roy. Meteor. Soc., 139, 1374–1388, 2013.
Beare, R. J. and MacVean, M. K.: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer, Bound.-Lay. Meteorol., 112, 257–281, 2004.
Bergot, T.: Small-scale structure of radiation fog: a large-eddy simulation study, Q. J. Roy. Meteor. Soc., 139, 1099–1112, 2013.
Bergot, T.: Large Eddy Simulation study of the dissipation of radiation fog, Q. J. Roy. Meteor. Soc., 142, 1029–1040, 2015.
Publications Copernicus
Download
Short summary
Large eddy simulations of a radiation fog event occurring during the ParisFog experiment have been studied to analyze the impact of the dynamics on the fog life cycle. They included a sophisticated microphysical scheme, the drag effect of a trees barrier and deposition on vegetation. The blocking effect of the trees induces elevated fog formation and limits cooling and cloud water production. The deposition process was found to exert the most significant impact on the fog prediction.
Citation
Altmetrics
Final-revised paper
Preprint