Articles | Volume 16, issue 14
https://doi.org/10.5194/acp-16-9421-2016
https://doi.org/10.5194/acp-16-9421-2016
Research article
 | 
29 Jul 2016
Research article |  | 29 Jul 2016

Conditions for super-adiabatic droplet growth after entrainment mixing

Fan Yang, Raymond Shaw, and Huiwen Xue

Related authors

High-resolution temperature profiling in the Π Chamber: variability of statistical properties of temperature fluctuations
Robert Grosz, Kamal Kant Chandrakar, Raymond A. Shaw, Jesse C. Anderson, Will Cantrell, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 2619–2638, https://doi.org/10.5194/amt-18-2619-2025,https://doi.org/10.5194/amt-18-2619-2025, 2025
Short summary
An improved Freezing Ice Nucleation Detection Analyzer (FINDA) for droplet immersion freezing measurement
Kaiqi Wang, Kai Bi, Shuling Chen, Markus Hartmann, Zhijun Wu, Jiyu Gao, Xiaoyu Xu, Yuhan Cheng, Mengyu Huang, Yunbo Chen, Huiwen Xue, Bingbing Wang, Yaqiong Hu, Xiongying Zhang, Xincheng Ma, Ruijie Li, Ping Tian, Ottmar Möhler, Heike Wex, Frank Startmann, Jie Chen, and Xianda Gong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1873,https://doi.org/10.5194/egusphere-2025-1873, 2025
Short summary
Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025,https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024,https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024,https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ambient and intrinsic dependencies of evolving ice-phase particles within a decaying winter storm during IMPACTS
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 25, 8087–8106, https://doi.org/10.5194/acp-25-8087-2025,https://doi.org/10.5194/acp-25-8087-2025, 2025
Short summary
High-resolution modeling of early contrail evolution from hydrogen-powered aircraft
Annemarie Lottermoser and Simon Unterstrasser
Atmos. Chem. Phys., 25, 7903–7924, https://doi.org/10.5194/acp-25-7903-2025,https://doi.org/10.5194/acp-25-7903-2025, 2025
Short summary
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Failed cyclogenesis of a mesoscale convective system near Cabo Verde: the role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
Atmos. Chem. Phys., 25, 7447–7465, https://doi.org/10.5194/acp-25-7447-2025,https://doi.org/10.5194/acp-25-7447-2025, 2025
Short summary
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary

Cited articles

Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: Numerical simulation of cloud-clear air interfacial mixing: Effects on cloud microphysics, J. Atmos. Sci., 63, 3204–3225, 2006.
Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: Numerical simulation of cloud-clear air interfacial mixing: homogeneous vs. inhomogeneous mixing, J. Atmos. Sci., 66, 2493–2500, 2009.
Baker, M., Corbin, R., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, 1980.
Beals, M. J., Fugal, J. P., Shaw, R. A., Lu, J., Spuler, S. M., and Stith, J. L.: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale, Science, 350, 87–90, 2015.
Beard, K. V. and Ochs III, H. T.: Warm-rain initiation: An overview of microphysical mechanisms, J. Appl. Meteorol., 32, 608–625, 1993.
Download
Short summary
When dry air is mixed into a cloud, droplets evaporate. If the diluted cloud mixture continues to rise, the remaining droplets will grow. In this work we show theoretically and computationally that a critical height exists, above which the droplets in a mixed, diluted cloud volume become larger than those in an undiluted volume. An environment that is humid and aerosol free is most favorable for producing such large droplets, which may contribute to the onset of precipitation formation.
Share
Altmetrics
Final-revised paper
Preprint