Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 14
Atmos. Chem. Phys., 16, 9421–9433, 2016
https://doi.org/10.5194/acp-16-9421-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 9421–9433, 2016
https://doi.org/10.5194/acp-16-9421-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Jul 2016

Research article | 29 Jul 2016

Conditions for super-adiabatic droplet growth after entrainment mixing

Fan Yang et al.

Viewed

Total article views: 1,146 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
677 431 38 1,146 78 35 39
  • HTML: 677
  • PDF: 431
  • XML: 38
  • Total: 1,146
  • Supplement: 78
  • BibTeX: 35
  • EndNote: 39
Views and downloads (calculated since 05 Feb 2016)
Cumulative views and downloads (calculated since 05 Feb 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 04 Aug 2020
Publications Copernicus
Download
Short summary
When dry air is mixed into a cloud, droplets evaporate. If the diluted cloud mixture continues to rise, the remaining droplets will grow. In this work we show theoretically and computationally that a critical height exists, above which the droplets in a mixed, diluted cloud volume become larger than those in an undiluted volume. An environment that is humid and aerosol free is most favorable for producing such large droplets, which may contribute to the onset of precipitation formation.
When dry air is mixed into a cloud, droplets evaporate. If the diluted cloud mixture continues...
Citation
Final-revised paper
Preprint