Articles | Volume 16, issue 11
Atmos. Chem. Phys., 16, 6901–6911, 2016
https://doi.org/10.5194/acp-16-6901-2016
Atmos. Chem. Phys., 16, 6901–6911, 2016
https://doi.org/10.5194/acp-16-6901-2016

Research article 06 Jun 2016

Research article | 06 Jun 2016

Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study

Xiaoping Wang et al.

Related authors

Occurrence and spatial distribution of neutral perfluoroalkyl substances and cyclic volatile methylsiloxanes in the atmosphere of the Tibetan Plateau
Xiaoping Wang, Jasmin Schuster, Kevin C. Jones, and Ping Gong
Atmos. Chem. Phys., 18, 8745–8755, https://doi.org/10.5194/acp-18-8745-2018,https://doi.org/10.5194/acp-18-8745-2018, 2018
Short summary
Atmospheric organochlorine pesticides and polychlorinated biphenyls in urban areas of Nepal: spatial variation, sources, temporal trends, and long-range transport potential
Balram Pokhrel, Ping Gong, Xiaoping Wang, Sanjay Nath Khanal, Jiao Ren, Chuanfei Wang, Shaopeng Gao, and Tandong Yao
Atmos. Chem. Phys., 18, 1325–1336, https://doi.org/10.5194/acp-18-1325-2018,https://doi.org/10.5194/acp-18-1325-2018, 2018
Short summary
Atmospheric processes of organic pollutants over a remote lake on the central Tibetan Plateau: implications for regional cycling
Jiao Ren, Xiaoping Wang, Chuanfei Wang, Ping Gong, and Tandong Yao
Atmos. Chem. Phys., 17, 1401–1415, https://doi.org/10.5194/acp-17-1401-2017,https://doi.org/10.5194/acp-17-1401-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Non-target and suspect characterisation of organic contaminants in ambient air – Part 1: Combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography
Laura Röhler, Pernilla Bohlin-Nizzetto, Pawel Rostkowski, Roland Kallenborn, and Martin Schlabach
Atmos. Chem. Phys., 21, 1697–1716, https://doi.org/10.5194/acp-21-1697-2021,https://doi.org/10.5194/acp-21-1697-2021, 2021
Short summary
Low-NO atmospheric oxidation pathways in a polluted megacity
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021,https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Seasonal variation and origins of volatile organic compounds observed during 2 years at a western Mediterranean remote background site (Ersa, Cape Corsica)
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021,https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Ambient nitro-aromatic compounds – biomass burning versus secondary formation in rural China
Christian Mark Garcia Salvador, Rongzhi Tang, Michael Priestley, Linjie Li, Epameinondas Tsiligiannis, Michael Le Breton, Wenfei Zhu, Limin Zeng, Hui Wang, Ying Yu, Min Hu, Song Guo, and Mattias Hallquist
Atmos. Chem. Phys., 21, 1389–1406, https://doi.org/10.5194/acp-21-1389-2021,https://doi.org/10.5194/acp-21-1389-2021, 2021
Short summary
Secular change in atmospheric Ar∕N2 and its implications for ocean heat uptake and Brewer–Dobson circulation
Shigeyuki Ishidoya, Satoshi Sugawara, Yasunori Tohjima, Daisuke Goto, Kentaro Ishijima, Yosuke Niwa, Nobuyuki Aoki, and Shohei Murayama
Atmos. Chem. Phys., 21, 1357–1373, https://doi.org/10.5194/acp-21-1357-2021,https://doi.org/10.5194/acp-21-1357-2021, 2021
Short summary

Cited articles

Aulagnier, F. and Poissant, L.: Some Pesticides Occurrence in Air and Precipitation in Québec, Canada, Environ. Sci. Technol., 39, 2960–2967, https://doi.org/10.1021/es048361s, 2005.
Bailey, R. E.: Global hexachlorobenzene emissions, Chemosphere, 43, 167–182, 2001.
Bednorz, E.: Snow cover in western Poland and macro-scale circulation conditions, Int. J. Climatol., 22, 533–541, 2002.
Bogdal, C., Müller, C. E., Buser, A. M., Wang, Z., Scheringer, M., Gerecke, A. C., Schmid, P., Zennegg, M., MacLeod, M., and Hungerbühler, K.: Emissions of Polychlorinated Biphenyls, Polychlorinated Dibenzo-p-dioxins, and Polychlorinated Dibenzofurans during 2010 and 2011 in Zurich, Switzerland, Environ. Sci. Technol., 48, 482–490, 10.1021/es4044352, 2014.
Brault, E. K., Goebel, M. E., Geisz, H. N., Canuel, E. A., and Dickhut, R. M.: Inter-Annual Variation of Persistent Organic Pollutants (POPS) in an Antarctic Top Predator Arctocephalus gazella, Environ. Sci. Technol., 47, 12744–12752, https://doi.org/10.1021/es403577f, 2013.
Download
Short summary
Is there any linkage between climate interactions and spatial distribution of persistent organic pollutants (POPs)? To answer this question, we conducted long-term passive air monitoring across the Tibetan Plateau. We found that there are three graphical zones over the Tibetan Plateau that could be classified as a function of POP fingerprints. This study highlights validity of using POP fingerprints as chemical tracers to track the interactions of climate systems.
Altmetrics
Final-revised paper
Preprint