Articles | Volume 16, issue 19
Atmos. Chem. Phys., 16, 12441–12455, 2016
https://doi.org/10.5194/acp-16-12441-2016
Atmos. Chem. Phys., 16, 12441–12455, 2016
https://doi.org/10.5194/acp-16-12441-2016

Research article 05 Oct 2016

Research article | 05 Oct 2016

Reynolds-number dependence of turbulence enhancement on collision growth

Ryo Onishi and Axel Seifert

Related authors

Turbulent enhancement of radar reflectivity factor for polydisperse cloud droplets
Keigo Matsuda and Ryo Onishi
Atmos. Chem. Phys., 19, 1785–1799, https://doi.org/10.5194/acp-19-1785-2019,https://doi.org/10.5194/acp-19-1785-2019, 2019
Short summary
Direct Lagrangian tracking simulation of droplet growth in vertically developing cloud
Yuichi Kunishima and Ryo Onishi
Atmos. Chem. Phys., 18, 16619–16630, https://doi.org/10.5194/acp-18-16619-2018,https://doi.org/10.5194/acp-18-16619-2018, 2018
Short summary
Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results
Masuo Nakano, Akiyoshi Wada, Masahiro Sawada, Hiromasa Yoshimura, Ryo Onishi, Shintaro Kawahara, Wataru Sasaki, Tomoe Nasuno, Munehiko Yamaguchi, Takeshi Iriguchi, Masato Sugi, and Yoshiaki Takeuchi
Geosci. Model Dev., 10, 1363–1381, https://doi.org/10.5194/gmd-10-1363-2017,https://doi.org/10.5194/gmd-10-1363-2017, 2017
Short summary
Turbulence effects on warm-rain formation in precipitating shallow convection revisited
Axel Seifert and Ryo Onishi
Atmos. Chem. Phys., 16, 12127–12141, https://doi.org/10.5194/acp-16-12127-2016,https://doi.org/10.5194/acp-16-12127-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–cloud interactions: the representation of heterogeneous ice activation in cloud models
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021,https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Sensitivity of precipitation formation to secondary ice production in winter orographic mixed-phase clouds
Zane Dedekind, Annika Lauber, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 15115–15134, https://doi.org/10.5194/acp-21-15115-2021,https://doi.org/10.5194/acp-21-15115-2021, 2021
Short summary
Environmental sensitivities of shallow-cumulus dilution – Part 2: Vertical wind profile
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 21, 14039–14058, https://doi.org/10.5194/acp-21-14039-2021,https://doi.org/10.5194/acp-21-14039-2021, 2021
Short summary
Supersaturation, buoyancy, and deep convection dynamics
Wojciech W. Grabowski and Hugh Morrison
Atmos. Chem. Phys., 21, 13997–14018, https://doi.org/10.5194/acp-21-13997-2021,https://doi.org/10.5194/acp-21-13997-2021, 2021
Short summary
Statistical properties of a stochastic model of eddy hopping
Izumi Saito, Takeshi Watanabe, and Toshiyuki Gotoh
Atmos. Chem. Phys., 21, 13119–13130, https://doi.org/10.5194/acp-21-13119-2021,https://doi.org/10.5194/acp-21-13119-2021, 2021
Short summary

Cited articles

Abrahamson, J.: Collision rates of small particles in a vigorously turbulent fluid, Chem. Eng. Sci., 30, 1371–1379, 1975.
Ayala, O., Grabowski, W. W., and Wang, L.-P.: A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles, J. Comput. Phys., 225, 51–73, 2007.
Ayala, O., Rosa, B., and Wang, L.-P.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization, New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016, 2008a.
Ayala, O., Rosa, B., Wang, L.-P., and Grabowski, W. W.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation, New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015, 2008b.
Blyth, A. M.: Entrainment in cumulus clouds, J. Appl. Meteorol., 32, 626–641, 1993.
Download
Short summary
This study includes massively parallel simulation results on droplet collisions in turbulence. The attained maximum Taylor-microscale-based Reynolds number (Re) exceeds 103, which steps into the typical range (O(103)–O(104)) of observed Re in turbulent clouds. The results clearly show that the Re dependence of turbulence enhancement on droplet collision growth is relevant for cloud microphysics modeling. This will promote the discussion on the Re dependence of turbulent collision statistics.
Altmetrics
Final-revised paper
Preprint