Articles | Volume 16, issue 18
Atmos. Chem. Phys., 16, 12127–12141, 2016
https://doi.org/10.5194/acp-16-12127-2016
Atmos. Chem. Phys., 16, 12127–12141, 2016
https://doi.org/10.5194/acp-16-12127-2016
Research article
28 Sep 2016
Research article | 28 Sep 2016

Turbulence effects on warm-rain formation in precipitating shallow convection revisited

Axel Seifert and Ryo Onishi

Related authors

Aerosol-cloud-radiation interaction during Saharan dust episodes: The dusty cirrus puzzle
Axel Seifert, Vanessa Bachmann, Florian Filipitsch, Jochen Förstner, Christian Grams, Gholam Ali Hoshyaripour, Julian Quinting, Anika Rohde, Heike Vogel, Annette Wagner, and Bernhard Vogel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-746,https://doi.org/10.5194/acp-2022-746, 2022
Preprint under review for ACP
Short summary
Improving the representation of aggregation in a two-moment microphysical scheme with statistics of multi-frequency Doppler radar observations
Markus Karrer, Axel Seifert, Davide Ori, and Stefan Kneifel
Atmos. Chem. Phys., 21, 17133–17166, https://doi.org/10.5194/acp-21-17133-2021,https://doi.org/10.5194/acp-21-17133-2021, 2021
Short summary
The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021,https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Applying a new integrated mass-flux adjustment filter in rapid update cycling of convective-scale data assimilation for the COSMO model (v5.07)
Yuefei Zeng, Alberto de Lozar, Tijana Janjic, and Axel Seifert
Geosci. Model Dev., 14, 1295–1307, https://doi.org/10.5194/gmd-14-1295-2021,https://doi.org/10.5194/gmd-14-1295-2021, 2021
Short summary
Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020,https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–precipitation elevation dependence over the central Himalayas using cloud-resolving WRF-Chem numerical modeling
Pramod Adhikari and John F. Mejia
Atmos. Chem. Phys., 23, 1019–1042, https://doi.org/10.5194/acp-23-1019-2023,https://doi.org/10.5194/acp-23-1019-2023, 2023
Short summary
Machine learning of cloud types in satellite observations and climate models
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023,https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023,https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 287–309, https://doi.org/10.5194/acp-23-287-2023,https://doi.org/10.5194/acp-23-287-2023, 2023
Short summary
Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency
Guy Dagan
Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022,https://doi.org/10.5194/acp-22-15767-2022, 2022
Short summary

Cited articles

Ayala, O., Rosa, B., and Wang, L.-P.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization, New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016, 2008a.
Ayala, O., Rosa, B., Wang, L.-P., and Grabowski, W.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation, New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015, 2008b.
Beard, K. V. and Ochs, H. T.: Warm-Rain Initiation: An Overview of Microphysical Mechanisms, J. Appl. Meteorol., 32, 608–625, 1993.
Beheng, K. D.: The evolution of raindrop spectra: A review of basic microphysical essentials, Rainfall: State of the Science, Geophys. Monogr., 191, 29–48, 2010.
Beheng, K. D. and Doms, G.: A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations, Contrib. Atmos. Phys., 59, 66–84, 1986.
Download
Short summary
In this study we investigate the effect of turbulence on rain formation in shallow clouds. Several formulations of the collision kernel for turbulent flows using different turbulence models have been suggested in recent years. Here we compare two formulations and find that, although both give a significant increase in collision rate, the differences are quite large, especially for high Reynolds numbers as they are observed in clouds.
Altmetrics
Final-revised paper
Preprint