Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7287-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-7287-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
800-year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions
I. A. Wendl
Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
A. Eichler
Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
E. Isaksson
Norwegian Polar Institute, Framsenteret, 9296 Tromsø, Norway
T. Martma
Institute of Geology, Tallinn University of Technology, Tallinn, Estonia
Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
Related authors
I. A. Wendl, J. A. Menking, R. Färber, M. Gysel, S. D. Kaspari, M. J. G. Laborde, and M. Schwikowski
Atmos. Meas. Tech., 7, 2667–2681, https://doi.org/10.5194/amt-7-2667-2014, https://doi.org/10.5194/amt-7-2667-2014, 2014
Paolo Gabrielli, Theo M. Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2174, https://doi.org/10.5194/egusphere-2025-2174, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
A low latitude-high altitude Alpine ice core record was obtained in 2011 from the glacier Alto dell’Ortles (Eastern Alps, Italy) and provided evidence of one of the oldest Alpine ice core records spanning the last ~7000 years, back to the last Northern Hemisphere Climatic Optimum. Here we provide a new Alto dell’Ortles chronology of improved accuracy that will allow to constrain Holocene climatic and environmental histories emerging from this high-altitude glacial archive of Central Europe.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 18, 421–430, https://doi.org/10.5194/amt-18-421-2025, https://doi.org/10.5194/amt-18-421-2025, 2025
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a two-dimensional liquid chromatography method to determine the chiral ratios of the monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha Glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021, https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Dimitri Osmont, Michael Sigl, Anja Eichler, Theo M. Jenk, and Margit Schwikowski
Clim. Past, 15, 579–592, https://doi.org/10.5194/cp-15-579-2019, https://doi.org/10.5194/cp-15-579-2019, 2019
Short summary
Short summary
We present the first black carbon (BC) ice-core record from the Andes (Illimani, Bolivia). It spans the entire Holocene and reflects biomass burning emissions from the Amazon Basin, with high (low) concentrations during warm–dry (wet–cold) periods. The highest fire activity occurred during the Holocene Climatic Optimum (7000–3000 BCE). Recent BC levels, increasing since 1730 CE, do not exceed those of the Medieval Warm Period. The contribution from industrial and traffic emissions remains minor.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Dimitri Osmont, Isabel A. Wendl, Loïc Schmidely, Michael Sigl, Carmen P. Vega, Elisabeth Isaksson, and Margit Schwikowski
Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, https://doi.org/10.5194/acp-18-12777-2018, 2018
Short summary
Short summary
This study presents the first long-term and high-resolution refractory black carbon (rBC) ice core record from Svalbard, spanning the last 800 years. Our results show that rBC has had a predominant anthropogenic origin since the beginning of the Industrial Revolution in Europe and that rBC concentrations have been declining in the last 40 years. We discuss the impact of 20th century snowmelt on our record. We reconstruct biomass burning trends prior to 1800 by using a multi-proxy approach.
Anina Gilgen, Carole Adolf, Sandra O. Brugger, Luisa Ickes, Margit Schwikowski, Jacqueline F. N. van Leeuwen, Willy Tinner, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 11813–11829, https://doi.org/10.5194/acp-18-11813-2018, https://doi.org/10.5194/acp-18-11813-2018, 2018
Short summary
Short summary
Microscopic charcoal particles are fire-specific tracers, which are presently the primary source for reconstructing past fire activity. In this study, we implement microscopic charcoal particles into a global aerosol–climate model to better understand the transport of charcoal on a large scale. We find that the model captures a significant portion of the spatial variability but fails to reproduce the extreme variability observed in the charcoal data.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Mackenzie M. Grieman, Murat Aydin, Elisabeth Isaksson, Margit Schwikowski, and Eric S. Saltzman
Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, https://doi.org/10.5194/cp-14-637-2018, 2018
Short summary
Short summary
This study presents organic acid levels in an ice core from Svalbard over the past 800 years. These acids are produced from wildfire emissions and transported as aerosol. Organic acid levels are high early in the record and decline until the 20th century. Siberia and Europe are likely the primary source regions of the fire emissions. The data are similar to those from a Siberian ice core prior to 1400 CE. The timing of the divergence after 1400 CE is similar to a shift in North Atlantic climate.
Carmen Paulina Vega, Elisabeth Isaksson, Elisabeth Schlosser, Dmitry Divine, Tõnu Martma, Robert Mulvaney, Anja Eichler, and Margit Schwikowski-Gigar
The Cryosphere, 12, 1681–1697, https://doi.org/10.5194/tc-12-1681-2018, https://doi.org/10.5194/tc-12-1681-2018, 2018
Short summary
Short summary
Ions were measured in firn and ice cores from Fimbul Ice Shelf, Antarctica, to evaluate sea-salt loads. A significant sixfold increase in sea salts was found in the S100 core after 1950s which suggests that it contains a more local sea-salt signal, dominated by processes during sea-ice formation in the neighbouring waters. In contrast, firn cores from three ice rises register the larger-scale signal of atmospheric flow conditions and transport of sea-salt aerosols produced over open water.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017, https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Short summary
Black carbon (BC) deposition enhances Arctic warming and melting. We present Svalbard ice core BC data from 2005 to 2015, comparing the results with chemical transport model data. The ice core and modelled BC deposition trends clearly deviate from measured and observed atmospheric concentration trends, and thus meteorological processes such as precipitation and scavenging efficiency seem to have a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Chiara Uglietti, Alexander Zapf, Theo Manuel Jenk, Michael Sigl, Sönke Szidat, Gary Salazar, and Margit Schwikowski
The Cryosphere, 10, 3091–3105, https://doi.org/10.5194/tc-10-3091-2016, https://doi.org/10.5194/tc-10-3091-2016, 2016
Short summary
Short summary
A meaningful interpretation of the climatic history contained in ice cores requires a precise chronology. For dating the older and deeper part of the glaciers, radiocarbon analysis can be used when organic matter such as plant or insect fragments are found in the ice. Since this happens rarely, a complementary dating tool, based on radiocarbon dating of the insoluble fraction of carbonaceous aerosols entrapped in the ice, allows for ice dating between 200 and more than 10 000 years.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Carmen P. Vega, Elisabeth Schlosser, Dmitry V. Divine, Jack Kohler, Tõnu Martma, Anja Eichler, Margit Schwikowski, and Elisabeth Isaksson
The Cryosphere, 10, 2763–2777, https://doi.org/10.5194/tc-10-2763-2016, https://doi.org/10.5194/tc-10-2763-2016, 2016
Short summary
Short summary
Surface mass balance and water stable isotopes from firn cores on three ice rises at Fimbul Ice Shelf are reported. The results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores. The first deuterium excess data for the area suggests a possible role of seasonal moisture transport changes on the annual isotopic signal. Large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios at the sites.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
C. Müller-Tautges, A. Eichler, M. Schwikowski, G. B. Pezzatti, M. Conedera, and T. Hoffmann
Atmos. Chem. Phys., 16, 1029–1043, https://doi.org/10.5194/acp-16-1029-2016, https://doi.org/10.5194/acp-16-1029-2016, 2016
Short summary
Short summary
The paper focuses on the determination and interpretation of historic records of organic compounds in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. The resulting long-term records of organic species were found to be influenced by the forest fire history in southern Switzerland, anthropogenic emissions, as well as changing mineral dust transport to the drilling site.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
S. Altnau, E. Schlosser, E. Isaksson, and D. Divine
The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, https://doi.org/10.5194/tc-9-925-2015, 2015
Short summary
Short summary
The first comprehensive study of a set of 76 firn cores in Dronning Maud Land was carried out. The δ18O of both the plateau and the ice shelf cores exhibit a slight positive trend over the second half of the 20th century. The SMB has a negative trend in the ice shelf cores, but increases on the plateau. Comparison with meteorological data revealed that for the ice shelf regions, atmospheric dynamic effects are more important, while on the plateau, thermodynamic effects predominate.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
P. Zotter, V. G. Ciobanu, Y. L. Zhang, I. El-Haddad, M. Macchia, K. R. Daellenbach, G. A. Salazar, R.-J. Huang, L. Wacker, C. Hueglin, A. Piazzalunga, P. Fermo, M. Schwikowski, U. Baltensperger, S. Szidat, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 13551–13570, https://doi.org/10.5194/acp-14-13551-2014, https://doi.org/10.5194/acp-14-13551-2014, 2014
M. M. Ruppel, E. Isaksson, J. Ström, E. Beaudon, J. Svensson, C. A. Pedersen, and A. Korhola
Atmos. Chem. Phys., 14, 11447–11460, https://doi.org/10.5194/acp-14-11447-2014, https://doi.org/10.5194/acp-14-11447-2014, 2014
A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante
Atmos. Chem. Phys., 14, 9613–9622, https://doi.org/10.5194/acp-14-9613-2014, https://doi.org/10.5194/acp-14-9613-2014, 2014
I. A. Wendl, J. A. Menking, R. Färber, M. Gysel, S. D. Kaspari, M. J. G. Laborde, and M. Schwikowski
Atmos. Meas. Tech., 7, 2667–2681, https://doi.org/10.5194/amt-7-2667-2014, https://doi.org/10.5194/amt-7-2667-2014, 2014
S. Kaspari, T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski
Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, https://doi.org/10.5194/acp-14-8089-2014, 2014
I. Mariani, A. Eichler, T. M. Jenk, S. Brönnimann, R. Auchmann, M. C. Leuenberger, and M. Schwikowski
Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, https://doi.org/10.5194/cp-10-1093-2014, 2014
A. Spolaor, J. Gabrieli, T. Martma, J. Kohler, M. B. Björkman, E. Isaksson, C. Varin, P. Vallelonga, J. M. C. Plane, and C. Barbante
The Cryosphere, 7, 1645–1658, https://doi.org/10.5194/tc-7-1645-2013, https://doi.org/10.5194/tc-7-1645-2013, 2013
T. Papina, T. Blyakharchuk, A. Eichler, N. Malygina, E. Mitrofanova, and M. Schwikowski
Clim. Past, 9, 2399–2411, https://doi.org/10.5194/cp-9-2399-2013, https://doi.org/10.5194/cp-9-2399-2013, 2013
M. Schwikowski, M. Schläppi, P. Santibañez, A. Rivera, and G. Casassa
The Cryosphere, 7, 1635–1644, https://doi.org/10.5194/tc-7-1635-2013, https://doi.org/10.5194/tc-7-1635-2013, 2013
S. Brönnimann, I. Mariani, M. Schwikowski, R. Auchmann, and A. Eichler
Clim. Past, 9, 2013–2022, https://doi.org/10.5194/cp-9-2013-2013, https://doi.org/10.5194/cp-9-2013-2013, 2013
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine
The Cryosphere, 7, 987–1006, https://doi.org/10.5194/tc-7-987-2013, https://doi.org/10.5194/tc-7-987-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular characterization of organic aerosols in urban and forested areas of Paris using high-resolution mass spectrometry
Measurement report: Wintertime aerosol characterization at an urban traffic site in Helsinki, Finland
Source apportionment and ecotoxicity of PM2.5 pollution events in a major Southern Hemisphere megacity: influence of a biofuel-impacted fleet and biomass burning
Marine organic aerosol at Mace Head: effects from phytoplankton and source region variability
Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India
Formation of highly absorptive secondary brown carbon through nighttime multiphase chemistry of biomass burning emissions
Measurement report: Vertically resolved atmospheric properties observed over the Southern Great Plains with the ArcticShark uncrewed aerial system
Technical note: Towards a stronger observational support for haze pollution control by interpreting carbonaceous aerosol results derived from different measurement approaches
Non-biogenic sources are an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
The critical role of aqueous-phase processes in aromatic-derived nitrogen-containing organic aerosol formation in cities with different energy consumption patterns
Characterization of atmospheric water-soluble brown carbon in the Athabasca oil sands region, Canada
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Measurement Report: Molecular composition, sources, and evolution of atmospheric organic aerosols in a basin city in China
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Observations of high-time-resolution and size-resolved aerosol chemical composition and microphysics in the central Arctic: implications for climate-relevant particle properties
Measurement report: Brown carbon aerosol in rural Germany – sources, chemistry, and diurnal variations
Particle flux-gradient relationships in the high Arctic: Emission and deposition patterns across three surface types
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Seasonal investigation of ultrafine-particle organic composition in an eastern Amazonian rainforest
Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: Insights from single particle aerosol mass spectrometry
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Direct measurement of N2O5 heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations
Measurement report: Per- and polyfluoroalkyl substances (PFAS) in particulate matter (PM10) from activated sludge aeration
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Significant contributions of biomass burning to PM2.5-bound aromatic compounds: insights from field observations and quantum chemical calculations
A 60-year atmospheric nitrate isotope record from a Southeast Greenland ice core with minimal post-depositional alteration
Iron isotopes reveal significant aerosol dissolution over the Pacific Ocean
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Enrichment of organic nitrogen in fog residuals observed in the Italian Po Valley
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Technical note: Reconstructing surface missing aerosol elemental carbon data in long-term series with ensemble learning
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Enhanced emission of intermediate/semi-volatile organic matters in both gas and particle phases from ship exhausts with low-sulfur fuels
Advances in characterization of black carbon particles and their associated coatings using the soot particle aerosol mass spectrometer in Singapore, a complex city environment
Measurement report: Crustal materials play an increasing role in elevating particle pH: Insights from 12-year records in a typical inland city of China
African dust transported to Barbados in the Wintertime Lacks Indicators of Chemical Aging
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Machine Learning Assisted Chemical Characterization and Optical Properties of Atmospheric Brown Carbon in Nanjing, China
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 25, 4907–4928, https://doi.org/10.5194/acp-25-4907-2025, https://doi.org/10.5194/acp-25-4907-2025, 2025
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland, and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments and a mobile laboratory were used, and the measurement data were analysed further with modelling tools like positive matrix factorization and the Pollution Detection Algorithm.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
Atmos. Chem. Phys., 25, 4587–4616, https://doi.org/10.5194/acp-25-4587-2025, https://doi.org/10.5194/acp-25-4587-2025, 2025
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources remain relevant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane-bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 25, 4107–4129, https://doi.org/10.5194/acp-25-4107-2025, https://doi.org/10.5194/acp-25-4107-2025, 2025
Short summary
Short summary
This study presents the first source apportionment of organic aerosol at Mace Head via high-resolution mass spectrometry. Introducing transfer entropy as a novel method reveals that aged organic aerosol originates from both open-ocean ozonolysis and local peat-burning oxidation. Methanesulfonic acid and organic sea spray both mirror phytoplankton activity, with the former closely tied to coccolithophore blooms and the latter linked to diatoms, chlorophytes, and cyanobacteria.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuwen Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 25, 3737–3752, https://doi.org/10.5194/acp-25-3737-2025, https://doi.org/10.5194/acp-25-3737-2025, 2025
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from diluted biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with background aerosol water and water-rich fogs and clouds.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Yuan Cheng, Ying-jie Zhong, Zhi-qing Zhang, Xu-bing Cao, and Jiu-meng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-537, https://doi.org/10.5194/egusphere-2025-537, 2025
Short summary
Short summary
As an emerging hotspot of atmospheric sciences, Northeast China is distinct due to the frigid winter and the strong emissions from agricultural fires. Based on field campaigns conducted in Harbin, we successively identified the analytical method that could lead to proper results of organic and elemental carbon. Our results are believed to be a support for future efforts on exploration of the PM2.5 sources in Northeast China, which are essential for further improving the regional air quality.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025, https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary
Short summary
Previous measurement–model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities of China.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2763–2780, https://doi.org/10.5194/acp-25-2763-2025, https://doi.org/10.5194/acp-25-2763-2025, 2025
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of nitrogen-containing organic compounds (NOCs) in PM2.5 during winter were compared among cities with different energy consumption patterns. The aerosol NOC pollution during winter in China is closely associated with the intensity of precursor emissions and the aqueous-phase processes. Our results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter in China.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
Atmos. Chem. Phys., 25, 2423–2442, https://doi.org/10.5194/acp-25-2423-2025, https://doi.org/10.5194/acp-25-2423-2025, 2025
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca oil sands region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (collected during the summer of 2021) identified oil sands operations as a measurable brown carbon source. Industrial aerosol emissions were unlikely to impact regional radiative forcing. These findings show that fluorescence spectroscopy can be used to monitor brown carbon in the AOSR.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Junke Zhang, Xinyi Fu, Chunying Chen, Yunfei Su, Siyu Liu, Luyao Chen, Yubao Chen, Gehui Wang, and Andre S. H. Prevot
EGUsphere, https://doi.org/10.5194/egusphere-2025-92, https://doi.org/10.5194/egusphere-2025-92, 2025
Short summary
Short summary
The 125 organic aerosol (OA) compounds in PM2.5 in winter in Chengdu were measured at the molecular level. OA was dominated by fatty acids, phthalate esters, and anhydrosugars, and were deeply influenced by anthropogenic sources. As pollution worsens: secondary inorganic species and secondary organic carbon (OC) dominated the increase in PM2.5; fatty acids and anhydrosugars dominated the increase in OA; and the contribution of secondary formation and biomass burning to OC increased markedly.
Amie Dobracki, Ernie R. Lewis, Arthur J. Sedlacek III, Tyler Tatro, Maria A. Zawadowicz, and Paquita Zuidema
Atmos. Chem. Phys., 25, 2333–2363, https://doi.org/10.5194/acp-25-2333-2025, https://doi.org/10.5194/acp-25-2333-2025, 2025
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer over the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes (heterogeneous and aqueous phases) determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Uzoamaka Ezenobi, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
Atmos. Chem. Phys., 25, 1917–1930, https://doi.org/10.5194/acp-25-1917-2025, https://doi.org/10.5194/acp-25-1917-2025, 2025
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase was determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at a rural location in central Europe.
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
EGUsphere, https://doi.org/10.5194/egusphere-2025-183, https://doi.org/10.5194/egusphere-2025-183, 2025
Short summary
Short summary
The Arctic is warming faster than the global average and aerosol-cloud-sea-ice interactions are crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over multiple surfaces. Wide lead surfaces acted as particle sources with the strongest sensible heat fluxes, while closed ice surfaces acted as a particle sink. This study improves methods to measure these interactions, enhancing our understanding of Arctic climate processes.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 25, 959–977, https://doi.org/10.5194/acp-25-959-2025, https://doi.org/10.5194/acp-25-959-2025, 2025
Short summary
Short summary
We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources.
Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3469, https://doi.org/10.5194/egusphere-2024-3469, 2025
Short summary
Short summary
In this study, we analyzed the mixing state and atmospheric chemical processes of Pb-rich single particles in Beijing. Then, we focused on analyzing the differences in Pb-rich particles between the heating period and non-heating period, as well as the formation mechanism of lead nitrate after coal-to-gas conversion. Our results highlighted the improvement of coal-to-gas conversion on Pb in the particulate.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Huabin Dong, and Keding Lu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3804, https://doi.org/10.5194/egusphere-2024-3804, 2025
Short summary
Short summary
We directly measured the dinitrogen pentoxide (N2O5) uptake coefficient which critical impact the NOx fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found the performance of current γ(N2O5) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation on particulate nitrate production potential. Our findings suggest the directions for future studies.
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
EGUsphere, https://doi.org/10.5194/egusphere-2024-3952, https://doi.org/10.5194/egusphere-2024-3952, 2025
Short summary
Short summary
Pollution with per- and polyfluoroalkyl substances (PFAS) received attention due to their environmental persistence and bioaccumulation. PM10 collected above a scaled-down activated sludge tank treating domestic sewage for a population >10,000 people in the UK were analysed for a range of short-, medium- and long-chain PFAS. Eight PFAS were detected in the PM10. Our results suggest that wastewater treatment processes i.e. activated sludge aeration could aerosolise PFAS into airborne PM.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3678, https://doi.org/10.5194/egusphere-2024-3678, 2025
Short summary
Short summary
The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM2.5 were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
EGUsphere, https://doi.org/10.5194/egusphere-2024-3937, https://doi.org/10.5194/egusphere-2024-3937, 2024
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions, atmospheric acidity, and oxidation chemistry driven by human activity. However, nitrate in snow can be altered by UV-driven post-depositional processes, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in an SE-Dome ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Capucine Camin, François Lacan, Catherine Pradoux, Marie Labatut, Anne Johansen, and James W. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-3777, https://doi.org/10.5194/egusphere-2024-3777, 2024
Short summary
Short summary
This manuscript presents the chemical composition of aerosols (> 1µm) over the Equatorial and Tropical Pacific Ocean, presenting the first measurements of iron isotopes in aerosols from this region. Iron concentrations and isotopes were determined using a Neptune MC-ICPMS. Our data analysis reveals that a significant portion of the aerosols undergo dissolution and removal during atmospheric transport. These findings contribute to original conclusions about the chemistry and physics of aerosols.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
EGUsphere, https://doi.org/10.5194/egusphere-2024-3629, https://doi.org/10.5194/egusphere-2024-3629, 2024
Short summary
Short summary
This study investigated aerosol-cloud interactions, focusing on organic nitrogen (ON) formation in the aqueous phase. Measurements were conducted in wintertime Italian Po Valley, using aerosol mass spectrometry. The fog was enriched in more hygroscopic inorganic compounds and ON, containing e.g. imidazoles. The formation of imidazole by aerosol-fog interactions could be confirmed for the first time in atmospheric observations. Findings highlight the role of fog in nitrogen aerosol formation.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2776, https://doi.org/10.5194/egusphere-2024-2776, 2024
Short summary
Short summary
We developed a new method to reconstruct missing elemental carbon (EC) data in four Chinese cities from 2013 to 2023. Using machine learning, we accurately filled data gaps and introduced a new approach to analyze EC trends. Our findings reveal a significant decline in EC due to stricter pollution controls, though this slowed after 2020. This study provides a versatile framework for addressing data gaps and supports strategies to reduce urban air pollution and its climate impacts.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3433, https://doi.org/10.5194/egusphere-2024-3433, 2024
Short summary
Short summary
Intermediate/semi-volatile organic compounds in both gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low-sulfur to ultra-low-sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes, in conjunction with the ratio of octadecanoic to tetradecanoic could be considered as potential tracers for HFO exhausts.
Mutian Ma, Laura-Hélèna Rivellini, Yichen Zong, Markus Kraft, Liya E. Yu, and Alex King Yin Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3240, https://doi.org/10.5194/egusphere-2024-3240, 2024
Short summary
Short summary
This work advances our understanding of emission and atmospheric evolution of black carbon (BC) particles in Singapore, a complex urban environment impacted by multiple local and regional combustion sources, based on the improved source apportionment analysis of real-time aerosol mass spectrometry measurement.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2869, https://doi.org/10.5194/egusphere-2024-2869, 2024
Short summary
Short summary
To address this, 12-year observational data in Zhengzhou were investigated and revealed that the resuspension of surrounding soil dust determined the rebound of crustal material concentrations after 2019, further elevating the particle pH. Therefore, the future ammonia reduction policies in North China may not lead to a rapid increase in particle acidity buffering by the crustal materials, but it is necessary to consider synergistic control with dust sources.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
EGUsphere, https://doi.org/10.5194/egusphere-2024-3288, https://doi.org/10.5194/egusphere-2024-3288, 2024
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by inorganic and organic acids that enhances cloud droplet formation, nutrient availability, and reflectivity of. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Yu Huang, Xingru Li, Dan Dan Huang, Ruoyuan Lei, Binhuang Zhou, Yunjiang Zhang, and Xinlei Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2757, https://doi.org/10.5194/egusphere-2024-2757, 2024
Short summary
Short summary
This work performed a comprehensive investigation on the chemical and optical properties of the brown carbon in PM2.5 samples collected in Nanjing, China. In particular, we used the machine learning approach to identify a list of key BrC species, which can be a good reference for future studies. Our findings extend the understanding on BrC properties and are valuable to the assessment of its impact on air quality and radiative forcing.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Cited articles
Abram, N. J., Wolff, E. W., and Curran, M. A. J.: A review of sea ice proxy information from polar ice cores, Quaternary Sci. Rev., 79, 168–183, https://doi.org/10.1016/j.quascirev.2013.01.011, 2013.
Adams, P. J., Seinfeld, J. H., and Koch, D. M.: Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model, J. Geophys. Res.-Atmos., 104, 13791–13823, https://doi.org/10.1029/1999JD900083, 1999.
Baltensperger, U., Schwikowski, M., Gäggeler, H. W., Jost, D. T., Beer, J., Siegenthaler, U., Wagenbach, D., Hofmann, H. J., and Synal, H. A.: Transfer of atmospheric constituents into an alpine snow field, Atmos. Environ. A-Gen., 27, 1881–1890, https://doi.org/10.1016/0960-1686(93)90293-8, 1993.
Beaudon, E., Moore, J. C., Martma, T., Pohjola, V. A., Van De Wal, R. S. W., Kohler, J., and Isaksson, E.: Lomonosovfonna and Holtedahlfonna ice cores reveal east–west disparities of the Spitsbergen environment since AD 1700, J. Glaciol., 59, 1069–1083, https://doi.org/10.3189/2013JoG12J203, 2013.
Becagli, S., Castellano, E., Cerri, O., Curran, M., Frezzotti, M., Marino, F., Morganti, A., Proposito, M., Severi, M., and Traversi, R.: Methanesulphonic acid (MSA) stratigraphy from a Talos Dome ice core as a tool in depicting sea ice changes and southern atmospheric circulation over the previous 140 years, Atmos. Environ., 43, 1051–1058, 2009.
Beine, H. J., Dominè, F., Ianniello, A., Nardino, M., Allegrini, I., Teinilä, K., and Hillamo, R.: Fluxes of nitrates between snow surfaces and the atmosphere in the European high Arctic, Atmos. Chem. Phys., 3, 335–346, https://doi.org/10.5194/acp-3-335-2003, 2003.
Bergin, M. H., Jaffrezo, J.-L., Davidson, C. I., Dibb, J. E., Pandis, S. N., Hillamo, R., Maenhaut, W., Kuhns, H. D., and Makela, T.: The contributions of snow, fog, and dry deposition to the summer flux of anions and cations at Summit, Greenland, J. Geophys. Res.-Atmos., 100, 16275–16288, https://doi.org/10.1029/95JD01267, 1995.
Björkman, M. P., Kühnel, R., Partridge, D. G., Roberts, T. J., Aas, W., Mazzola, M., Viola, A., Hodson, A., Ström, J. and Isaksson, E.: Nitrate dry deposition in Svalbard, Tellus B, 65, 19071, https://doi.org/10.3402/tellusb.v65i0.19071, 2013.
Brimblecombe, P., Tranter, M., Abrahams, P. W., Blackwood, I., Davies, T. D., and Vincent, C. E.: Relocation and preferential elution of acidic solute through the snowpack of a small, remote, high-altitude Scottish catchment, Ann. Glaciol., 7, 141–147, 1985.
Chester, R. and Jickells, T. D.: Marine Geochemistry, John Wiley & Sons, Chichester, West Sussex, UK, 2012.
Codispoti, L. A., Kelly, V., Thessen, A., Matrai, P., Suttles, S., Hill, V., Steele, M., and Light, B.: Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production, Prog. Oceanogr., 110, 126–150, https://doi.org/10.1016/j.pocean.2012.11.006, 2013.
Dickerson, R. R.: Reactive nitrogen compounds in the Arctic, J. Geophys. Res.-Atmos., 90, 10739–10743, https://doi.org/10.1029/JD090iD06p10739, 1985.
Divine, D. V. and Dick, C.: Historical variability of sea ice edge position in the Nordic Seas, J. Geophys. Res.-Oceans, 111, C01001, https://doi.org/10.1029/2004JC002851, 2006.
Divine, D. V., Isaksson, E., Martma, T., Meijer, H. A., Moore, J., Pohjola, V., van de Wal, R. S. W., and Godtliebsen, F.: Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice core data, Polar Res., 30, 7379, https://doi.org/10.3402/polar.v30i0.7379, 2011.
Döscher, A., Gäggeler, H. W., Schotterer, U., and Schwikowski, M.: A historical record of ammonium concentrations from a glacier in the Alps, Geophys. Res. Lett., 23, 2741–2744, 1996.
Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 320, 893–897, https://doi.org/10.1126/science.1150369, 2008.
Eichler, A., Schwikowski, M., Gäggeler, H. W., Furrer, V., Synal, H.-A., Beer, J., Saurer, M., and Funk, M.: Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.), J. Glaciol., 46, 507–515, https://doi.org/10.3189/172756500781833098, 2000.
Eichler, A., Schwikowski, M., and Gäggeler, H. W.: Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192–203, 2001.
Eichler, A., Brütsch, S., Olivier, S., Papina, T., and Schwikowski, M.: A 750 year ice core record of past biogenic emissions from Siberian boreal forests, Geophys. Res. Lett., 36, L18813, https://doi.org/10.1029/2009GL038807, 2009.
Eichler, A., Tinner, W., Brütsch, S., Olivier, S., Papina, T., and Schwikowski, M.: An ice-core based history of Siberian forest fires since AD 1250, Quaternary Sci. Rev., 30, 1027–1034, https://doi.org/10.1016/j.quascirev.2011.02.007, 2011.
Eleftheriadis, K., Vratolis, S., and Nyeki, S.: Aerosol black carbon in the European Arctic: measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007, Geophys. Res. Lett., 36, L02809, https://doi.org/10.1029/2008GL035741, 2009.
Eneroth, K., Kjellström, E., and Holmén, K.: A trajectory climatology for Svalbard; investigating how atmospheric flow patterns influence observed tracer concentrations, Phys. Chem. Earth, 28, 1191–1203, 2003.
Feng, Y. and Penner, J. E.: Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry, J. Geophys. Res.-Atmos., 112, D01304, https://doi.org/10.1029/2005JD006404, 2007.
Fibiger, D. L., Hastings, M. G., Dibb, J. E., and Huey, L. G.: The preservation of atmospheric nitrate in snow at Summit, Greenland, Geophys. Res. Lett., 40, 3484–3489, https://doi.org/10.1002/grl.50659, 2013.
Fischer, H., Wagenbach, D., and Kipfstuhl, J.: Sulfate and nitrate firn concentrations on the Greenland ice sheet: 2. Temporal anthropogenic deposition changes, J. Geophys. Res.–Atmos., 103, 21935–21942, https://doi.org/10.1029/98JD01886, 1998.
Forsström, S., Ström, J., Pedersen, C. A., Isaksson, E., and Gerland, S.: Elemental carbon distribution in Svalbard snow, J. Geophys. Res.-Atmos., 114, D19112, https://doi.org/10.1029/2008JD011480, 2009.
Fuhrer, K., Neftel, A., Anklin, M., Staffelbach, T., and Legrand, M.: High-resolution ammonium ice core record covering a complete glacial-interglacial cycle, J. Geophys. Res.-Atmos., 101, 4147–4164, https://doi.org/10.1029/95JD02903, 1996.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vöosmarty, C. J.: Nitrogen cycles: Past, present, and future, Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Geng, H., Ryu, J. Y., Jung, H. J., Chung, H., Ahn, K. H., and Ro, C. U.: Single-particle characterization of summertime Arctic aerosols collected at Ny-Ålesund, Svalbard, Environ. Sci. Technol., 44, 2348–2353, 2010.
Geng, L., Alexander, B., Cole-Dai, J., Steig, E. J., Savarino, J., Sofen, E. D., and Schauer, A. J.: Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change, P. Natl. Acad. Sci. USA, 111, 5808–5812, https://doi.org/10.1073/pnas.1319441111, 2014.
Ginot, P., Stampfli, F., Stampfli, D., Schwikowski, M., and Gäggeler, H. W.: FELICS, a new ice core drilling system for high-altitude glaciers, Mem. Natl. Inst. Polar Res. Spec. Issue, 56, 38–48, 2002.
Ginot, P., Schotterer, U., Stichler, W., Godoi, M. A., Francou, B., and Schwikowski, M.: Influence of the Tungurahua eruption on the ice core records of Chimborazo, Ecuador, The Cryosphere, 4, 561–568, https://doi.org/10.5194/tc-4-561-2010, 2010.
Goto-Azuma, K. and Koerner, R. M.: Ice core studies of anthropogenic sulfate and nitrate trends in the Arctic, J. Geophys. Res., 106, 4959–4969, 2001.
Greenaway, K. R.: Experience with Arctic flying weather, Royal Meteorological Society, Canadian Branch, Toronto, Canada, 1950.
Hastings, M. G., Steig, E. J., and Sigman, D. M.: Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores, J. Geophys. Res.-Atmos., 109, 1984–2012, 2004.
Henderson, K., Laube, A., Gäggeler, H. W., Olivier, S., Papina, T., and Schwikowski, M.: Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai, J. Geophys. Res., 111, D03104, https://doi.org/10.1029/2005JD005819, 2006.
Hicks, S. and Isaksson, E.: Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice, J. Geophys. Res.-Atmos., 111, D02113, https://doi.org/10.1029/2005JD006167, 2006.
Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669–693, https://doi.org/10.5194/acp-10-669-2010, 2010a.
Hirdman, D., Burkhart, J. F., Sodemann, H., Eckhardt, S., Jefferson, A., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions, Atmos. Chem. Phys., 10, 9351–9368, https://doi.org/10.5194/acp-10-9351-2010, 2010b.
Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., and Campbell, B.: Evidence of NOx production within or upon ice particles in the Greenland snowpack, Geophys. Res. Lett., 26, 695–698, https://doi.org/10.1029/1999GL900077, 1999.
Isaksson, E., Pohjola, V., Jauhiainen, T., Moore, J., Pinglot, J. F., Vaikmaae, R., van de Wal, R. S. W., Hagen, J. O., Ivask, J., Karlöf, L., Martma, T., Meijer, H. A., Mulvaney, R., Thomassen, M., and van den Broeke, M.: A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920–97 data in relation to present climate and environmental conditions, J. Glaciol., 47, 335–345, 2001.
Isaksson, E., Kekonen, T., Moore, J., and Mulvaney, R.: The methanesulfonic acid (MSA) record in a Svalbard ice core, Ann. Glaciol., 42, 345–351, 2005.
Jauhiainen, T., Moore, J., Perämäki, P., Derome, J., and Derome, K.: Simple procedure for ion chromatographic determination of anions and cations at trace levels in ice core samples, Anal. Chim. Acta, 389, 21–29, 1999.
Kaufmann, P., Fundel, F., Fischer, H., Bigler, M., Ruth, U., Udisti, R., Hansson, M., de Angelis, M., Barbante, C., Wolff, E. W., Hutterli, M., and Wagenbach, D.: Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean, Quaternary Sci. Rev., 29, 313–323, https://doi.org/10.1016/j.quascirev.2009.11.009, 2010.
Keene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E.: Sea-salt corrections and interpretation of constituent ratios in marine precipitation, J. Geophys. Res.-Atmos., 91, 6647–6658, https://doi.org/10.1029/JD091iD06p06647, 1986.
Kehrwald, N., Zangrando, R., Gambaro, A., and Barbante, C.: Fire and climate: Biomass burning recorded in ice and lake cores, EPJ Web Conf., 9, 105–114, https://doi.org/10.1051/epjconf/201009008, 2010.
Kehrwald, N., Zangrando, R., Gabrielli, P., Jaffrezo, J.-L., Boutron, C., Barbante, C., and Gambaro, A.: Levoglucosan as a specific marker of fire events in Greenland snow, Tellus B, 64, 18196, https://doi.org/10.3402/tellusb.v64i0.18196, 2012.
Kekonen, T., Moore, J. C., Mulvaney, R., Isaksson, E., Pohjola, V., and Van De Wal, R. S. W.: A 800 year record of nitrate from the Lomonosovfonna ice core, Svalbard, Ann. Glaciol., 35, 261–265, 2002.
Kekonen, T., Moore, J., Perämäki, P., Mulvaney, R., Isaksson, E., Pohjola, V., and van de Wal, R. S. W.: The 800 year long ion record from the Lomonosovfonna (Svalbard) ice core, J. Geophys. Res., 110, D07304, https://doi.org/10.1029/2004JD005223, 2005.
Kellerhals, T., Brütsch, S., Sigl, M., Knüsel, S., Gäggeler, H. W., and Schwikowski, M.: Ammonium concentration in ice cores: A new proxy for regional temperature reconstruction?, J. Geophys. Res.-Atmos., 115, D16123, https://doi.org/10.1029/2009JD012603, 2010.
Kinnard, C., Zdanowicz, C. M., Fisher, D. A., Isaksson, E., de Vernal, A., and Thompson, L. G.: Reconstructed changes in Arctic sea ice over the past 1450 years, Nature, 479, 509–512, 2011.
Kühnel, R., Roberts, T. J., Björkman, M. P., Isaksson, E., Aas, W., Holmén, K., and Ström, J.: 20-year climatology of NO3- and NH4+ wet deposition at Ny-Ålesund, Svalbard, Adv. Meteorol., 406508, https://doi.org/10.1155/2011/406508, 2011.
Lavigne, F., Degeai, J.-P., Komorowski, J.-C., Guillet, S., Robert, V., Lahitte, P., Oppenheimer, C., Stoffel, M., Vidal, C. M., Surono, Pratomo, I., Wassmer, P., Hajdas, I., Hadmoko, D. S., and Belizal, E. de: Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia, P. Natl. Acad. Sci. USA, 110, 16742–16747, https://doi.org/10.1073/pnas.1307520110, 2013.
Law, K. S. and Stohl, A.: Arctic air pollution: Origins and impacts, Science, 315, 1537–1540, 2007.
Legrand, M.: Ice–core records of atmospheric sulphur, Philos. T. Roy. Soc. B, 352, 241–250, 1997.
Legrand, M. and De Angelis, M.: Light carboxylic acids in Greenland ice: A record of past forest fires and vegetation emissions from the boreal zone, J. Geophys. Res.-Atmos., 101, 4129–4145, 1996.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: a review, Rev. Geophys., 35, 219–244, 1997.
Legrand, M., de Angelis, M., and Delmas, R. J.: Ion chromatographic determination of common ions at ultratrace levels in Antarctic snow and ice, Anal. Chim. Acta, 156, 181–192, https://doi.org/10.1016/S0003-2670(00)85549-X, 1984.
Legrand, M., De Angelis, M., Staffelbach, T., Neftel, A., and Stauffer, B.: Large perturbations of ammonium and organic acids content in the summit-Greenland Ice Core. Fingerprint from forest fires?, Geophys. Res. Lett., 19, 473–475, https://doi.org/10.1029/91GL03121, 1992.
Legrand, M., De Angelis, M., and Maupetit, F.: Field investigation of major and minor ions along Summit (Central Greenland) ice cores by ion chromatography, J. Chromatogr. A, 640, 251–258, https://doi.org/10.1016/0021-9673(93)80188-E, 1993.
Legrand, M., Hammer, C., Angelis, M. D., Savarino, J., Delmas, R., Clausen, H., and Johnsen, S. J.: Sulfur-containing species (methanesulfonate and SO4) over the last climatic cycle in the Greenland Ice Core Project (central Greenland) ice core, J. Geophys. Res., 102, 26663–26679, https://doi.org/10.1029/97JC01436, 1997.
Legrand, M., Wolff, E., and Wagenbach, D.: Antarctic aerosol and snowfall chemistry: implications for deep Antarctic ice-core chemistry, Ann. Glaciol., 29, 66–72, https://doi.org/10.3189/172756499781821094, 1999.
Macias Fauria, M., Grinsted, A., Helama, S., Moore, J., Timonen, M., Martma, T., Isaksson, E., and Eronen, M.: Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since AD 1200, Clim. Dyn., 34, 781–795, 2010.
Matoba, S., Narita, H., Motoyama, H., Kamiyama, K., and Watanabe, O.: Ice core chemistry of Vestfonna ice cap in Svalbard, Norway, J. Geophys. Res., 107, 4721, https://doi.org/10.1029/2002JD002205, 2002.
Moore, J. C. and Grinsted, A.: Ion Fractionation and Percolation in Ice Cores with Seasonal Melting, in Physics of Ice Core Records II, vol. 68, Institute of Low Temperature Science, Hokkaido University, Hokkaido University Press, Sapporo, Japan, 287–298, 2009.
Moore, J. C., Grinsted, A., Kekonen, T., and Pohjola, V.: Separation of melting and environmental signals in an ice core with seasonal melt, Geophys. Res. Lett., 32, L10501, https://doi.org/10.1029/2005GL023039, 2005.
Moore, J., Kekonen, T., Grinsted, A., and Isaksson, E.: Sulfate source inventories from a Svalbard ice core record spanning the Industrial Revolution, J. Geophys. Res., 111, D15307, https://doi.org/10.1029/2005JD006453, 2006.
Moore, J. C., Beaudon, E., Kang, S., Divine, D., Isaksson, E., Pohjola, V. A., and van de Wal, R. S. W.: Statistical extraction of volcanic sulphate from nonpolar ice cores, J. Geophys. Res., 117, D03306, https://doi.org/10.1029/2011JD016592, 2012.
O'Dwyer, J., Isaksson, E., Vinje, T., Jauhiainen, T., Moore, J., Pohjola, V., Vaikmae, R., and van de Wal, R. S. W.: Methanesulfonic acid in a Svalbard ice core as an indicator of ocean climate, Geophys. Res. Lett., 27, 1159–1162, 2000.
Opel, T., Fritzsche, D., and Meyer, H.: Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya), Clim. Past, 9, 2379–2389, https://doi.org/10.5194/cp-9-2379-2013, 2013.
Perrette, M., Yool, A., Quartly, G. D., and Popova, E. E.: Near-ubiquity of ice-edge blooms in the Arctic, Biogeosciences, 8, 515–524, https://doi.org/10.5194/bg-8-515-2011, 2011.
Pohjola, V. A., Moore, J. C., Isaksson, E., Jauhiainen, T., Van de Wal, R. S. W., Martma, T., Meijer, H. A. J., and Vaikmäe, R.: Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard, J. Geophys. Res., 107, ACL 1-1–ACL 1-14, https://doi.org/10.1029/2000JD000149, 2002.
Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., and Gong, S. L.: Arctic haze: current trends and knowledge gaps, Tellus B, 59, 99–114, 2007.
Rhodes, R. H., Bertler, N. A. N., Baker, J. A., Sneed, S. B., Oerter, H., and Arrigo, K. R.: Sea ice variability and primary productivity in the Ross Sea, Antarctica, from methylsulphonate snow record, Geophys. Res. Lett., 36, L10704, https://doi.org/10.1029/2009GL037311, 2009.
Röthlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W., and Mulvaney, R.: Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core, J. Geophys. Res.-Atmos., 105, 20565–20572, https://doi.org/10.1029/2000JD900264, 2000.
Röthlisberger, R., Hutterli, M. A., Wolff, E. W., Mulvaney, R., Fischer, H., Bigler, M., Goto-Azuma, K., Hansson, M. E., Ruth, U., Siggaard-Andersen, M.-L., and Steffensen, J. P.: Nitrate in Greenland and Antarctic ice cores: a detailed description of post-depositional processes, Ann. Glaciol., 35, 209–216, https://doi.org/10.3189/172756402781817220, 2002.
Samuelsson, H.: Distribution of melt layers on the ice field Lomonosovfonna, Spitsbergen, Master thesis, Uppsala University, Uppsala, Sweden, 2001.
Sharma, S., Chan, E., Ishizawa, M., Toom-Sauntry, D., Gong, S. L., Li, S. M., Tarasick, D. W., Leaitch, W. R., Norman, A., Quinn, P. K., Bates, T. S., Levasseur, M., Barrie, L. A., and Maenhaut, W.: Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere, J. Geophys. Res., 117, D12209, https://doi.org/10.1029/2011JD017074, 2012.
Shaw, G. E.: The arctic haze phenomenon, B. Am. Meteorol. Soc., 76, 2403–2414, 1995.
Sigl, M.: Ice core based reconstruction of past climate conditions from Colle Gnifetti, Swiss Alps, PhD thesis, University of Bern, Bern, Switzerland, 2009.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years, J. Geophys. Res.-Atmos., 118, 1151–1169, https://doi.org/10.1029/2012JD018603, 2013.
Simões, J. C. and Zagorodnov, V. S.: The record of anthropogenic pollution in snow and ice in Svalbard, Norway, Atmos. Environ., 35, 403–413, 2001.
Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling, Biogeochemistry, 83, 245–275, https://doi.org/10.1007/s10533-007-9091-5, 2007.
Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res., 111, D11306, https://doi.org/10.1029/2005JD006888, 2006.
Stohl, A., Berg, T., Burkhart, J. F., Fjæraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511–534, https://doi.org/10.5194/acp-7-511-2007, 2007.
Teinilä, K., Hillamo, R., Kerminen, V.-M., and Beine, H. J.: Aerosol chemistry during the NICE dark and light campaigns, Atmos. Environ., 37, 563–575, https://doi.org/10.1016/S1352-2310(02)00826-9, 2003.
Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., and Francou, B.: A 25 000-year tropical climate history from Bolivian ice cores, Science, 282, 1858–1864, https://doi.org/10.1126/science.282.5395.1858, 1998.
Tunved, P., Ström, J., and Krejci, R.: Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard, Atmos. Chem. Phys., 13, 3643–3660, https://doi.org/10.5194/acp-13-3643-2013, 2013.
Udisti, R., Bellandi, S., and Piccardi, G.: Analysis of snow from Antarctica: a critical approach to ion-chromatographic methods, Fresen. J. Anal. Chem., 349, 289–293, https://doi.org/10.1007/BF00323205, 1994.
Van De Wal, R. S. W., Mulvaney, R., Isaksson, E., Moore, J. C., Pinglot, J. F., Pohjola, V. A., and Thomassen, M. P. A.: Reconstruction of the historical temperature trend from measurements in a medium-length borehole on the Lomonosovfonna plateau, Svalbard, Ann. Glaciol., 35, 371–378, 2002.
Vinje, T.: Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic seas during the period 1864–1998, J. Climate, 14, 255–267, 2001.
Vogt, M. and Liss, P. S.: Dimethylsulfide and Climate, in Surface Ocean–Lower Atmosphere Processes, edited by: Quéré, C. L. and Saltzman, E. S., American Geophysical Union, Washington, D. C., 197–232, https://doi.org/10.1029/2008GM000790, 2009.
Weiler, K., Fischer, H., Fritzsche, D., Ruth, U., Wilhelms, F., and Miller, H.: Glaciochemical reconnaissance of a new ice core from Severnaya Zemlya, Eurasian Arctic, J. Glaciol., 51, 64–74, https://doi.org/10.3189/172756505781829629, 2005.
Whitlow, S., Mayewski, P., Dibb, J., Holdsworth, G., and Twickler, M.: An ice-core-based record of biomass burning in the Arctic and Subarctic, 1750–1980, Tellus B, 46, 234–242, 1994.
Wolff, E. W.: Ice sheets and nitrogen, Philos. T. Roy. Soc. B, 368, 20130127, https://doi.org/10.1098/rstb.2013.0127, 2013.
Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B., and Salmon, R. A.: The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements, Atmos. Chem. Phys., 8, 5627–5634, https://doi.org/10.5194/acp-8-5627-2008, 2008.
Zennaro, P., Kehrwald, N., McConnell, J. R., Schüpbach, S., Maselli, O. J., Marlon, J., Vallelonga, P., Leuenberger, D., Zangrando, R., Spolaor, A., Borrotti, M., Barbaro, E., Gambaro, A., and Barbante, C.: Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core, Clim. Past, 10, 1905–1924, https://doi.org/10.5194/cp-10-1905-2014, 2014.
Short summary
Nitrate and ammonium ice core records from Lomonosovfonna, Svalbard, indicated anthropogenic pollution from Eurasia as major source during the 20th century. In pre-industrial times nitrate is correlated with methane sulfonate, which we explain with a fertilising effect, presumably triggered by enhanced atmospheric nitrogen input to the ocean. Eurasia was likely the main source area also of pre-industrial nitrate, but for ammonium, biogenic emissions from Siberian boreal forests were dominant.
Nitrate and ammonium ice core records from Lomonosovfonna, Svalbard, indicated anthropogenic...
Altmetrics
Final-revised paper
Preprint