Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7269-2015
https://doi.org/10.5194/acp-15-7269-2015
Research article
 | 
03 Jul 2015
Research article |  | 03 Jul 2015

Impact of planetary boundary layer turbulence on model climate and tracer transport

E. L. McGrath-Spangler, A. Molod, L. E. Ott, and S. Pawson

Related authors

Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions
E. L. McGrath-Spangler and A. Molod
Atmos. Chem. Phys., 14, 6717–6727, https://doi.org/10.5194/acp-14-6717-2014,https://doi.org/10.5194/acp-14-6717-2014, 2014

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024,https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024,https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024,https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024,https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary

Cited articles

Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain Reevaporation, Boundary Layer-Convection Interactions, and Pacific Rainfall Patterns in an AGCM, J. Atmos. Sci., 63, 3383–3403, https://doi.org/10.1175/jas3791.1, 2006.
Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masaarie, K., Prather, M., Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002, https://doi.org/10.1029/2004GB002439, 2006
Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007, 2007.
Ballard, S. P., Golding, B. W., and Smith, R. N. B.: Mesoscale model experimental forecasts of the Haar of northeast Scotland, Mon. Weather Rev., 119, 2107–2123, https://doi.org/10.1175/1520-0493(1991)119<2107:MMEFOT>2.0.CO;2, 1991.
Beljaars, A. C. M. and Betts, A. K.: Validation of the boundary layer representation in the ECMWF model, ECMWF Seminar Proceedings, Reading, UK, 7–11 September 1992, Validation of models over Europe, Vol. II, 159–195, available at: http://old.ecmwf.int/publications/library/ecpublications/_pdf/seminar/1992/validation2_beljaars.pdf (last access: 24 October 2014), 1992.
Download
Short summary
PBL processes are important for weather, climate, and tracer transport and concentration. In the GEOS-5 AGCM, the PBL depth is used in the calculation of turbulent mixing. This study analyzes the impact of using different PBL depth definitions in this calculation. Near surface wind speed differences modify Saharan dust on the order of 1e-4kg m-2. CO surface concentrations are modified by up to 20 ppb over biomass burning regions. Instantaneous CO2 differences are on the order of 10 ppm.
Altmetrics
Final-revised paper
Preprint