Articles | Volume 14, issue 11
Atmos. Chem. Phys., 14, 5415–5431, 2014
https://doi.org/10.5194/acp-14-5415-2014
Atmos. Chem. Phys., 14, 5415–5431, 2014
https://doi.org/10.5194/acp-14-5415-2014

Research article 04 Jun 2014

Research article | 04 Jun 2014

Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach

Y. Hu et al.

Related authors

Deep-Learning Spatial Principles from Deterministic Chemical Transport Model for Chemical Reanalysis: An Application in China for PM2.5
Baolei Lyu, Ran Huang, Xinlu Wang, Weiguo Wang, and Yongtao Hu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-253,https://doi.org/10.5194/gmd-2021-253, 2021
Revised manuscript under review for GMD
Short summary
Evaluation of Anthropogenic Emissions and Ozone Pollution in the North China Plain: Insights from the Air Chemistry Research in Asia (ARIAs) Campaign
Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-248,https://doi.org/10.5194/acp-2019-248, 2019
Revised manuscript not accepted
Short summary
Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model
C. E. Ivey, H. A. Holmes, Y. T. Hu, J. A. Mulholland, and A. G. Russell
Geosci. Model Dev., 8, 2153–2165, https://doi.org/10.5194/gmd-8-2153-2015,https://doi.org/10.5194/gmd-8-2153-2015, 2015
Short summary
Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality
M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell
Geosci. Model Dev., 6, 1429–1445, https://doi.org/10.5194/gmd-6-1429-2013,https://doi.org/10.5194/gmd-6-1429-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021,https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021,https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021,https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary
How alkaline compounds control atmospheric aerosol particle acidity
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021,https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
Aerosol transport pathways and source attribution in China during the COVID-19 outbreak
Lili Ren, Yang Yang, Hailong Wang, Pinya Wang, Lei Chen, Jia Zhu, and Hong Liao
Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021,https://doi.org/10.5194/acp-21-15431-2021, 2021
Short summary

Cited articles

Appel, K. W., Bhave, P. V., Gilliland, A. B., Sarwar, G., and Roselle, S. J.: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II – particulate matter, Atmos. Environ., 42, 6057–6066, 2008.
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013.
Baek, J.: Improving aerosol simulations: Assessing and improving emissions and secondary organic aerosol formation in air quality modeling, 140 pp., Georgia Institute of Tecnology, Atlanta, GA, Ph.D. Dissertation, 2009.
Balachandran, S., Pachon, J. E., Hu, Y., Lee, D., Mulholland, J. A., and Russell, A. G.: Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis, Atmos. Environ., 61, 387–394, 2012.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multi-scale Air Quality (CMAQ) model aerosol component: 1. Model description, J. Geophys. Res., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Download
Altmetrics
Final-revised paper
Preprint