Articles | Volume 14, issue 10
https://doi.org/10.5194/acp-14-4909-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-4909-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Strong wintertime ozone events in the Upper Green River basin, Wyoming
B. Rappenglück
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
L. Ackermann
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
S. Alvarez
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
J. Golovko
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
M. Buhr
Air Quality Design, Boulder, CO, USA
R. A. Field
University of Wyoming, Laramie, WY, USA
J. Soltis
University of Wyoming, Laramie, WY, USA
D. C. Montague
University of Wyoming, Laramie, WY, USA
B. Hauze
Meteorological Solutions Inc., Salt Lake City, UT, USA
S. Adamson
Meteorological Solutions Inc., Salt Lake City, UT, USA
D. Risch
Meteorological Solutions Inc., Salt Lake City, UT, USA
G. Wilkerson
Meteorological Solutions Inc., Salt Lake City, UT, USA
D. Bush
T&B Systems, Santa Rosa, CA, USA
T. Stoeckenius
Environ, Novato, CA, USA
C. Keslar
Wyoming Department of Environmental Quality, Cheyenne, WY, USA
Related authors
Bavand Sadeghi, Arman Pouyaei, Yunsoo Choi, and Bernhard Rappenglueck
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-565, https://doi.org/10.5194/acp-2021-565, 2021
Revised manuscript not accepted
Short summary
Short summary
The most significant contributions of VOCs over the Houston Ship Channel came from alkanes. Light alkanes were dominant sources in both seasons. We explored the photochemical reaction of organic compounds and studied their contributions to ozone formation. Ethylene and propylene have the highest. Through weighted trajectory, VOCs at Lynchburg Ferry site was influenced by petrochemical sectors of Baytown and Galveston Bay refineries and industrial facilities of the Bayport industrial district.
Joshua P. DiGangi, Glenn S. Diskin, Subin Yoon, Sergio L. Alvarez, James H. Flynn, Claire E. Robinson, Michael A. Shook, K. Lee Thornhill, Edward L. Winstead, Luke D. Ziemba, Maria Obiminda L. Cambaliza, James B. Simpas, Miguel Ricardo A. Hilario, and Armin Sorooshian
Atmos. Chem. Phys., 25, 17387–17397, https://doi.org/10.5194/acp-25-17387-2025, https://doi.org/10.5194/acp-25-17387-2025, 2025
Short summary
Short summary
Both fire and urban emissions are major contributors to air pollution in Southeast Asia. Relative increases in measurements of methane and carbon monoxide gases during an aircraft campaign near the Philippines in 2019 were used to isolate pollution emissions from fires vs. urban sources. Results were compared to atmospheric transport models to determine the sources' regional origins, and relationships between pollution indicators relevant to poor air quality were investigated for each source.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
Atmos. Chem. Phys., 25, 2631–2648, https://doi.org/10.5194/acp-25-2631-2025, https://doi.org/10.5194/acp-25-2631-2025, 2025
Short summary
Short summary
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
Atmos. Chem. Phys., 23, 10845–10867, https://doi.org/10.5194/acp-23-10845-2023, https://doi.org/10.5194/acp-23-10845-2023, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long-range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement, while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful for identifying the influence of aged BB plumes in anthropogenically influenced areas.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Subin Yoon, Alexander Kotsakis, Sergio L. Alvarez, Mark G. Spychala, Elizabeth Klovenski, Paul Walter, Gary Morris, Ernesto Corrales, Alfredo Alan, Jorge A. Diaz, and James H. Flynn
Atmos. Meas. Tech., 15, 4373–4384, https://doi.org/10.5194/amt-15-4373-2022, https://doi.org/10.5194/amt-15-4373-2022, 2022
Short summary
Short summary
SO2 is adverse to human health and the environment. A single SO2 sonde was developed to provide direct SO2 measurement with a greater vertical extent, a lower limit of detection, and less uncertainty relative to the previous dual-sonde method. The single sonde was tested in the field near volcanoes and anthropogenic sources where the sonde measured SO2 ranging from 0.5 to 940 ppb. This lighter-weight payload can be a great candidate to attach to small drones and unmanned aerial vehicles.
Bavand Sadeghi, Arman Pouyaei, Yunsoo Choi, and Bernhard Rappenglueck
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-565, https://doi.org/10.5194/acp-2021-565, 2021
Revised manuscript not accepted
Short summary
Short summary
The most significant contributions of VOCs over the Houston Ship Channel came from alkanes. Light alkanes were dominant sources in both seasons. We explored the photochemical reaction of organic compounds and studied their contributions to ozone formation. Ethylene and propylene have the highest. Through weighted trajectory, VOCs at Lynchburg Ferry site was influenced by petrochemical sectors of Baytown and Galveston Bay refineries and industrial facilities of the Bayport industrial district.
Cited articles
Altshuller, A. P.: Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours, Atmos. Environ., 27A, 21–32, 1993.
Ammann, M.: private communication, Paul Scherrer Institute (PSI), Villigen, Switzerland, 2013.
Arya, S. P.: Air Pollution Meteorology and Dispersion, Oxford University Press, USA, 1998.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Bader, D. C. and McKee, T. B.: Effects of shear, stability and valley characteristics on the destruction of temperature inversions, J. Clim. Appl. Meteorol., 24, 822–832, 1985.
Bejan, I., Abd El Aal, Y., Barnes, I., Benter, T., Bohn, B., Wiesen, P., and Kleffmann, J.: The photolysis of ortho-nitrophenols: an new gas phase source of HONO, Phys. Chem. Chem. Phys. 8, 2028–2035, 2006.
Bishop, G. A., Morris, J. A., Stedman, D. H., Cohen, L. H., Countess, R. J., Countess, S. J., Maly, P., and Scherer, S.: The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions, Environ. Sci. Technol., 35, 1574–1578, 2001.
Björkman, M. P., Kühnel, R., Partridge, D. G., Roberts, T. J., Aas, W., Mazzola, M., Viola, A., Hodson, A., Ström, J., and Isaksson, E.: Nitrate dry deposition in Svalbord, Tellus B, 65, 1–18, https://doi.org/10.3402/tellusb.v65i0.19071, 2013.
Carter, W. P. L. and Seinfeld, J. H.: Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming, Atmos. Environ., 50, 255–266, https://doi.org/10.1016/j.atmosenv.2011.12.025, 2012.
Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., and Wang, T.: Ozone precursor relationships in the ambient air, J. Geophys. Res., 97, 6037–6055, 1992.
Chen, J., So, S., Lee, H., Fraser, M. P., Curl, R. F., Harman, T., and Tittel, F. K.: Atmospheric Formaldehyde Monitoring in the Greater Houston Area in 2002, Appl. Spectrosc., 58, 243–247, 2004.
Czader, B. H., Li, X., and Rappenglueck, B.: CMAQ modeling and analysis of radicals, radical precursors and chemical transformations, J. Geophys. Res., 118, 11376–11387, https://doi.org/10.1002/jgrd.50807, 2013.
Czader, B. H., Rappenglück, B., Percell, P., Byun, D. W., Ngan, F., and Kim, S.: Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006, Atmos. Chem. Phys., 12, 6939–6951, https://doi.org/10.5194/acp-12-6939-2012, 2012.
Dasgupta, P. K., Li, J., Zhang, G., Luke, W. T., McClenny, W. A., Stutz, J., and Fried, A.: Summertime Ambient Formaldehyde in Five U.S. Metropolitan Areas: Nashville, Atlanta, Houston, Philadelphia, and Tampa, Environ. Sci. Technol., 39, 4767–4783, 2005.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, available at: http://ready.arl.noaa.gov/HYSPLIT.php (last access: March 2013), NOAA Air Resources Laboratory, Silver Spring, MD, 2013.
Edwards, P. M., Young, C. J., Aikin, K., deGouw, J. A., Dubé, W. P., Geiger, F., Gilman, J. B., Helmig, D., Holloway, J. S., Kercher, J., Lerner, B., Martin, R., McLaren, R., Parrish, D. D., Peischl, J., Roberts, J. M., Ryerson, T. B., Thornton, J., Warneke, C., Williams, E. J., and Brown, S. S.: Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah, Atmos. Chem. Phys. Discuss., 13, 7503–7552, https://doi.org/10.5194/acpd-13-7503-2013, 2013.
EIA (US Energy Information Administration): Top 100 Oil and Gas Fields, available at: http://www.eia.gov/oil_gas/rpd/topfields.pdf, accessed February 2013, 2009.
Elshorbany, Y. F., Kleffmann, J., Hofzumahaus, A., Kurtenbach, R., Wiesen, P., Brauers, T., Bohn, B., Dorn, H.-P., Fuchs, H., Holland, F., Rohrer, F., Tillmann, R., Wegener, R., Wahner, A., Kanaya, Y., Yoshino, A., Nishida, S., Kajii, Y., Martinez, M., Kubistin, D., Harder, H., Lelieveld, J., Elste, T., Plass-Dülmer, C., Stange, G., Berresheim, H., and Schurath, U.: HOx budgets during HOxComp: A case study of HOx chemistry under NOx-limited conditions, J. Geophys. Res., 117, D03307, https://doi.org/10.1029/2011JD017008, 2012.
Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257–2273, https://doi.org/10.5194/acp-9-2257-2009, 2009.
Environ: Final Report – 2009 Upper Green River Ozone Study, Report to Wyoming Department of Environmental Quality (WDEQ), Cheyenne, WY, March 2010, available at: http://deq.state.wy.us/aqd/downloads/AirMonitor/Final_UGWOS_2011_Ozone_Study_Report_Text_and_Appendices.pdf, accessed 2013, 2010.
Field, R. A., Soltis, J., and Montague, D.: Pinedale Anticline Spatial Air Quality Assessment (PASQUA), Mobile laboratory monitoring of ozone precursors, Boulder South Road site 10/29/2010 to 05/02/2011, Summary Report, University of Wyoming, Laramie, Wyoming, available at: http://www-das.uwyo.edu/ozone/index.html (last access: February 2013), 2011.
Field, R. A., Soltis, J., and Montague, D.: Pinedale Anticline Spatial Air Quality Assessment (PASQUA), 2011–2012 Spatial Distribution Surveys, Summary Report, University of Wyoming, Laramie, Wyoming, available at: http://www-das.uwyo.edu/ozone/index.html (last access: February 2013), 2012a.
Field, R. A., Soltis, J., and Montague, D.: Temporal and Spatial Distributions of Volatile Organic Compounds Associated with Oil and Gas Development in the Upper Green River Basin of Wyoming, Invited in Session: A21J American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 3–7 December 2012, 2012b.
Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego, 969 pp., 2000.
Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and Ramazan, K. A.: The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism, Phys. Chem. Chem. Phys., 5, 223–242, 2003.
Goodman, A. L., Underwood, G. M., and Grassian, V. H.: Heterogeneous reaction of NO2: characterization of gas-phase and adsorbed products from the reaction, $2 \chemNO_2(g)+\chemH_2O(a)\to \chemHONO(g)+\chemHNO_3(a)$ on hydrated silica particles, J. Phys. Chem. A, 103, 7217–7223, 1999.
Hauglstaine, D. A., Granier, C., Brasseur, G. P., and Megie, G.: The importance of atmospheric chemistry inthe calculation of radiative forcing on the climate system, J. Geophys. Res., 99,1173–1186, 1994.
Hayden, K. L., Anlauf, K. G., Hastie, D. R., and Bottenheim, J. W.: Partitioning of reactive atmospheric nitrogen oxides at an elevated site in southern Quebec, Canada, J. Geophys. Res., 108, 4603, https://doi.org/10.1029/2002JD003188, 2003.
Heland, J., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere, Environ. Sci. Technol., 35, 3207–3212, 2001.
Helmig, D., Cohen, L. D., Bocquet, F., Oltmans, S., Grachev, A., and Neff, W.: Spring and summertime diurnal surface ozone fluxes over the polar snow at Summit, Greenland, Geophys. Res. Lett., 36, L08809, https://doi.org/10.1029/2008GL036549, 2009.
Honrath, R. E., Lu, Y., Peterson, M. C., Dibb, J. E., Arsenault, M. A., Cullen, N. J., and Steffen, K.: Vertical fluxes of NOx, HONO, and HNO3 above the snowpack at Summit, Greenland, Atmos. Environ., 36, 2629–2640, 2002.
Jacobson, M. Z.: Air Pollution and Global Warming, History, Science, and Solutions, Cambridge University Press, 406 pp., New York/USA, 2012.
Jenkin, M. I., Cox, R. A., and Williams, D. J.: Laboratory studies of the kinetics of formation of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour, Atmos. Environ., 22, 487–498, 1988.
Kirchstetter, T. W., Harley, R. A., and Littlejohn, D.: Measurement of nitrous acid in motor vehicle exhaust, Environ. Sci. Technol., 30, 2843–2849, 1996.
Kleffmann, J.: Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer, Chem. Phys., 8, 1137–1144, 2007.
Kleffmann, J., Becker, K. H., and Wiesen, P.,: Heterogeneous NO2 conversion processes on acid surfaces: possible atmospheric implications, Atmos. Environ., 32, 2721–2729, 1998.
Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J. C., and Wiesen, P.: A new instrument (LOPAP) for the detection of nitrous acid (HONO), Environ. Sci. Pollut. Res., 9, 48–54, 2002.
Kleffmann, J., Lörzer, J. C., Wiesen, P., Kern, C., Trick, S., Volkamer, R., Ródenas, M., and Wirtz, K.: Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO), Atmos. Environ., 40, 3640–3652, 2006.
Kleffmann, J. and Wiesen, P.: Technical Note: Quantification of interferences of wet chemical HONO LOPAP measurements under simulated polar conditions, Atmos. Chem. Phys., 8, 6813–6822, https://doi.org/10.5194/acp-8-6813-2008, 2008.
Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J., Lörzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A., and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385–3394, 2001.
Lefer, B. and Rappenglück, B.: The TexAQS-II radical and aerosol measurement project (TRAMP), Atmos. Environ., 44, 3997–4004, https://doi.org/10.1016/j.atmosenv.2010.05.053, 2010.
Leuchner, M. and Rappenglück, B.: VOC Source-Receptor Relationships in Houston during TexAQS-II, Atmos. Environ., 44, 4056–4067, https://doi.org/10.1016/j.atmosenv.2009.02.029, 2010.
Li, S. P., Matthews, J., and Sinha, A.: Atmospheric hydroxyl radical production from electronically excited NO2 and H2O, Science, 319, 1657–1660, 2008.
Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys., 12, 1541–1569, https://doi.org/10.5194/acp-12-1541-2012, 2012.
Luke, W. T., Kelley, P., Lefer, B. L., Flynn, J., Rappenglück, B., Leuchner, M., Dibb, J. E., Ziemba, L. D., Anderson, C. H., and Buhr, M.: Measurements of primary trace gases and NOy composition in Houston, Texas, Atmos. Environ., 44, 4068–4080, https://doi.org/10.1016/j.atmosenv.2009.08.014, 2010.
Mack, J. and Bolton, J. R.: Photochemistry of nitrite and nitrate in aqueous solution: a review, J. Photochem. Photobiol. A, 128, 1–13, 1999.
Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappenglück, B., Flynn, J., and Leuchner, M.: Atmospheric oxidation capacity in the summer of Houston 2006: comparison with summer measurements in other metropolitan studies, Atmos. Environ., 44, 4107–4115, https://doi.org/10.1016/j.atmosenv.2009.01.013, 2010.
MSI (Meteorological Solutions Inc.): Final Report 2011 Upper Green River Ozone Study, Report to Wyoming Department of Environmental Quality (WDEQ), Cheyenne, WY, October 2011, available at: http://deq.state.wy.us/aqd/downloads/AirMonitor/Final_UGWOS_2011_Ozone_Study_Report_Text_and_Appendices.pdf, 2011.
Olaguer, E. P., Kolb, C. E., Lefer, B., Rappenglück B., Zhang, R., Pinto, J. P.: Overview of the SHARP campaign: motivation, design, and major outcomes, J. Geophys. Res., 119, 2597–2610, https://doi.org/10.1002/2013JD019730, 2014.
Parrish, D. D., Allen, D. T., Bates, T. S., Estes, M., Fehsenfeld, F. C., Feingold, G., Ferrare, R., Hardesty, R. M., Meagher, J. F., Nielsen-Gammon, J. W., Pierce, R. B., Ryerson, T. B., Seinfeld, J. H., and Williams, E. J.: Overview of the second Texas air quality study (TexAQS-II) and the Gulf of Mexico atmospheric composition and climate study (GoMACCS), J. Geophys. Res., 114, D00F13, https://doi.org/10.1029/2009JD011842, 2009.
Pinto J., Dibb J., Lee B., Rappenglück B., Wood E., Zhang R., Lefer B., Ren X., Stutz J., Ackermann L., Golovko J., Herndon S., Levi M., Meng Q., Munger J., Zhaniser M., and Zheng J.: Intercomparison of Field Measurements of Nitrous Acid (HONO) during the SHARP Campaign, J. Geophys. Res., https://doi.org/10.1002/2013JD020287, 2014.
Ramazan, K. A., Wingen, L. M., Miller, Y., Chaban, G. M., Gerber, R. B., Xantheas, S. S., and Finlayson-Pitts, B. J.: New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes, J. Phys. Chem. A, 110, 6886–6897, 2006.
Rappenglück, B.: WDEQ UGWOS 2010 HONO Measurements, Report to Meteorological Solutions Inc., Salt Lake City, UT, May 2010, 2010.
Rappenglück, B.: WDEQ UGWOS 2011 HONO Measurements, Report to Meteorological Solutions Inc., Salt Lake City, UT, August 2011, 2011.
Rappenglück, B., Dasgupta, P. K., Leuchner, M., Li, Q., and Luke, W.: Formaldehyde and its relation to CO, PAN, and SO2 in the Houston-Galveston airshed, Atmos. Chem. Phys., 10, 2413–2424, https://doi.org/10.5194/acp-10-2413-2010, 2010.
Rappenglück, B., Lubertino, G., Alvarez, S., Golovko, J., Czader, B., and Ackermann, L.: Radical Precursors and Related Species from Traffic as Observed and Modeled at an Urban Highway Junction, J. Air Waste Man. Assoc., 63:11, 1270–1286, https://doi.org/10.1080/10962247.2013.822438, 2013.
Rappenglück, B., Melas, D., and Fabian, P.: Evidence of the impact of urban plumes on remote sites in the Eastern Mediterranean, Atmos. Environ., 37, 1853–1864, 2003.
Reidmiller, D. R., Jaffe, D. A., Fischer, E. V., and Finley, B.: Nitrogen oxides in the boundary layer and free troposphere at the Mt. Bachelor Observatory, Atmos. Chem. Phys., 10, 6043–6062, https://doi.org/10.5194/acp-10-6043-2010, 2010.
Ren, X., van Duin, D., Cazorla, M., Chen, S., Mao, J., Brune, W. H., Flynn, J. H., Grossberg, N., Lefer, B. L., Rappenglück, B., Wong, K. W., Tsai, C., Stutz, J., Dibb, J. E., Jobson, B. T., Luke, W. T., and Kelley, P.: Atmospheric Oxidation Chemistry and Ozone Production: Results from SHARP 2009 in Houston, Texas, J. Geophys. Res., 118, 5770–5780, https://doi.org/10.1002/jgrd.50342, 2013.
Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. B., and Brune, W. H.: HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ., 37, 3627–3637, 2003.
Rickard, A. R., Johnson, D., McGill, C. D., and Marston, G.: OH yields in the gas-phase reactions of ozone with alkenes, J. Phys. Chem., A103, 7656–7664, 1999.
Ridley, B. A., Shetter, J. D., Gandrug, B. W., Salas, L. J., Singh, H. B., Caroll, M. A., Hübler, G., Albritton, D. L., Hastie, D. R., Schiff, H. I., Mackay, G. I., Karechi, D. R., Davies, D. D., Bradshaw, J. D., Rodgers, M. O., Sandholm, S. T., Torres, A. L., Condon, E. P., Gregory, G. L., and Beck, S. M.: Ratios of peroxyacetylnitrate to active nitrogen observed during aircraft flights over the eastern Pacific oceans and continental United States, J. Geophys. Res., 95, 10179–10192, 1990.
Ródenas, M., Muñoz, A., Alacreu, F., Dorn, H.-P., Brauers, T., Kleffmann, J., Mikuška, P., Večeřa, Z., Häseler, R., Ye, C., Ruth, A., Dixneuf, S., Venables, D., Darby, S., Chen, J., Ashu-ayem, E., Elshorbany, Y., Voigt, C., Jessberger, P., Kaufmann, S., Schäuble, D., Mellouki, A., Cazaunau, M., Grosselin, B., Colomb, A., Michoud, V., Miet, K., Ball, S., Daniels, M., Goodall, I., Tan, D., Stickel, R., Case, A., Rappenglück, B., Croxatto, G., Percival, C., Bacak, A., Mcguillen, M., Dibb, J., Scheuer, E., Zhou, X., Ferm, M., Varma, R., Pilling, M., Clemente, E., Porras, R., Vera, T., Vázquez, M., Borrás, E., Valero, J., and Bloss, W.: The FIONA campaign (EUPHORE): Formal Intercomparison of Observations of Nitrous Acid, EGU Joint Assembly, Vienna/Austria, 3–9 April 2011, 2011.
Ródenas, M., Munoz, A., Alacreu, F., Brauers, T., Dorn, H.-P., Kleffmann, J., and Bloss, W.: Assessment of HONO Measurements: the FIONA Campaign at EUPHORE in Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, edited by: Barnes, I. and Rudzinski, K. J., NATO Science for Peace and Security Series C: Environmental Security, https://doi.org/10.1007/978-94-007-5034-0\textunderscore 4, 2013.
Rolph, G. D.: Real-time Environmental Applications and Display sYstem (READY) Website (http://ready.arl.noaa.gov), NOAA Air Resources Laboratory, Silver Spring, MD, 2013.
Sarwar, G., Roselle, S. J., Mathur, R., Appel, W., Dennis, R. L., and Vogel, B.: A comparison of CMAQ HONO predictions with observations from the Northeast Oxidant and Particle Study, Atmos. Environ., 42, 5760–5770, 2008
Schnell, R. C., Oltmans, S. J., Neely, R. R., Endres, M. S., and Molenar, J. V.,: Rapid photochemical production of ozone at high concentrations in a rural site during winter, Nat. Geosci., 2, 120–123, 2009.
Sheehy, P. M., Volkamer, R., Molina, L. T., and Molina, M. J.: Oxidative capacity of the Mexico City atmosphere – Part 2: A ROx radical cycling perspective, Atmos. Chem. Phys., 10, 6993–7008, https://doi.org/10.5194/acp-10-6993-2010, 2010.
Sillman, S.: Observation-based methods (OBMs) for analyzing urban/regional ozone production and Ozone-NOx-VOC sensitivity, Report to EPA, 1-D-57-95-NTEX, available at: http://www-personal.umich.edu/ sillman/obm.htm, accessed 2013, 2002.
Sillman, S. and He, D.: Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators, J. Geophys. Res., 107, 4659, https://doi.org/10.1029/2001JD001123, 2002.
Sörgel, M., Regelin, E., Bozem, H., Diesch, J.-M., Drewnick, F., Fischer, H., Harder, H., Held, A., Hosaynali-Beygi, Z., Martinez, M., and Zetzsch, C.: Quantification of the unknown HONO daytime source and its relation to NO2, Atmos. Chem. Phys., 11, 10433–10447, https://doi.org/10.5194/acp-11-10433-2011, 2011.
Sommariva, R., Trainer, M., de Gouw, J. A., Roberts, J. M., Warneke, C., Atlas, E., Flocke, F., Goldan, P. D., Kuster, W. C., Swanson, A. L., and Fehsenfeld, F. C.: A study of organic nitrates formation in an urban plume using a Master Chemical Mechanism, Atmos. Environ., 42, 5771–5786, 2008.
Stemmler, K., Ndour, M., Elshorbany, Y., Kleffmann, J., D'Anna, B., George, C., Bohn, B., and Ammann, M.: Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol, Atmos. Chem. Phys., 7, 4237–4248, https://doi.org/10.5194/acp-7-4237-2007, 2007.
Stull, R. B.: An Introduction to Bounday Layer Meteorology, Springer, 684 pp., Dordrecht/The Netherlands, 1988.
Stutz, J., Alicke, B., Ackermann, R., Geyer, A., Wang, S., White, A. B., Williams, E. J., Spicer, E. J., and Fast, J. D.: Relative humidity dependence of HONO chemistry in urban areas, J. Geophys. Res., 109, D03307, https://doi.org/10.1029/2003JD004135, 2004.
Stutz, J., Oh, H.-J., Whitlow, S. I., Anderson, C. H., Dibb, J. E., Flynn, J., Rappenglück, B., and Lefer, B.: Simultaneous DOAS and Mist-Chamber IC measurements of HONO in Houston, TX, Atmos. Environ., 44, 4090–4098, https://doi.org/10.1016/j.atmosenv.2009.02.003, 2010a.
Stutz, J., Wong, K. W., Lawrence, L., Ziemba, L., Flynn, J. H., Rappenglück, B., and Lefer, B.: Nocturnal NO3 radical chemistry in Houston, TX, Atmos. Environ., 44, 4099–4106, https://doi.org/10.1016/j.atmosenv.2009.03.004, 2010b.
TUV (2010): TUV 5.0 model version 5, November 2010, available at: http://cprm.acd.ucar.edu/ Models/TUV/, Madronich, S. and S. Flocke, Theoretical estimation of biologically effective UV radiation at the Earth's surface, in Solar Ultraviolet Radiation – Modeling, Measurements and Effects (Zerefos, C., ed.). NATO ASI Series Vol. I52, Springer-Verlag, Berlin, 1997.
US EPA (US Environmental Protection Agency: Area Designations for 2008 Ground-level Ozone Standards, available at: http://www.epa.gov/ozonedesignations/2008standards/final/region8f.htm, last access: February 2013), 2012.
Villena, G., Wiesen, P., Cantrell, C. A., Flocke, F., Fried, A., Hall, S. R., Hornbrook, R. S., Knapp, D., Kosciuch, E., Mauldin III, R. L., McGrath, J. A., Montzka, D., Richter, D., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R. M., Liao, J., Huey, L. G., and Kleffman, J.: Nitrous acid (HONO) during polar spring in Barrow, Alaska: a net source of OH radicals?, J. Geophys. Res., 116, D00R07, https://doi.org/10.1029/2011JD016643, 2011.
Wang, X., Yin, H., Ge, Y., Yu, L., Xu, Z., Yu, C., Shi, X., and Liu, H.: On-vehicle emission measurement of a light-duty diesel van at various speeds at high altitude, Atmos. Environ., https://doi.org/10.1016/j.atmosenv.2013.09.015, 2013 and
WDEQ: 2011 Winter Upper Green River Basin Emission Inventory, Wyoming Department of Environmental Quality (WDEQ), Cheyenne, Wyoming, 2011.
Wojtal, P., Halla, J. D., and McLaren, R.: Pseudo steady states of HONO measured in the nocturnal marine boundary layer: a conceptual model for HONO formation on aqueous surfaces, Atmos. Chem. Phys., 11, 3243–3261, https://doi.org/10.5194/acp-11-3243-2011, 2011.
Yin, H., Ge, Y., Wang, X., Yu, L., Ji, Z., and Chen, W.: Idle emission characteristics of a light-duty diesel van at various altitudes, Atmos. Environ., 70, 117–122, https://doi.org/10.1016/j.atmosenv.2013.01.012, 2013
Yu, C.-H. and Pielke, R. A.: Mesoscale air quality under stagnant synoptic cold season conditions in the Lake Powell area, Atmos. Environ., 20, 1751–1762, 1986.
Zhou, X., Beine, H. J., Honrath, R. E., Fuentes, J. D., Simpson, W., Shepson, P. B., and Bottenheim, J. W.: Snowpack photochemical production of HONO: a major source of OH in the arctic boundary layer in springtime, Geophys. Res. Lett., 28, 4087–4090, 2001.
Zhou, X. L., He, Y., Huang, G., Thornberry, T. D., Carroll, M. A., and Bertman, S. B.,: Photochemical production of nitrous acid on glass sample manifold surface, Geophys. Res. Lett., 29, 1681, https://doi.org/10.1029/2002GL015080, 2002.
Zhou, X., Gao, H., He, Y., Huang, G., Bertram, S. B., Civerolo, K., and Schwab, J.: Nitric acid photolysis on surfaces in low-NOx environments: significant atmospheric implications, Geophys. Res. Lett., 2217, 30, https://doi.org/10.1029/2003GL018620, 2003.
Ziemba, L. D., Dibb, J. E., Griffin, R. J., Anderson, C. H., Whitlow, S. L., Lefer, B. L., Rappenglück, B., and Flynn, J.: Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere, Atmos. Environ., 44, 4081–4089, https://doi.org/10.1016/j.atmosenv.2008.12.024, 2010.
Zweidinger, R. B., Sigsby, J. E., Tejada, S. B., Stump, F. D., Dropkin, D. L., Ray W. D., and Duncan, J.W.:. Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies, Environ. Sci. Technol., 22, 956–962, 1988
Altmetrics
Final-revised paper
Preprint