Articles | Volume 14, issue 4
https://doi.org/10.5194/acp-14-1897-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-1897-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain
Z. Kern
Oeschger Centre for Climate Change Research, Bern, Switzerland
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTA, Budapest, Hungary
Division of Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
B. Kohán
Dept. of Environmental and Landscape Geography, Eötvös University, Budapest, Hungary
M. Leuenberger
Oeschger Centre for Climate Change Research, Bern, Switzerland
Division of Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Related authors
No articles found.
Marie Bouchet, Amaëlle Landais, Antoine Grisart, Frédéric Parrenin, Frédéric Prié, Roxanne Jacob, Elise Fourré, Emilie Capron, Dominique Raynaud, Vladimir Ya Lipenkov, Marie-France Loutre, Thomas Extier, Anders Svensson, Etienne Legrain, Patricia Martinerie, Markus Leuenberger, Wei Jiang, Florian Ritterbusch, Zheng-Tian Lu, and Guo-Min Yang
Clim. Past, 19, 2257–2286, https://doi.org/10.5194/cp-19-2257-2023, https://doi.org/10.5194/cp-19-2257-2023, 2023
Short summary
Short summary
A new federative chronology for five deep polar ice cores retrieves 800 000 years of past climate variations with improved accuracy. Precise ice core timescales are key to studying the mechanisms linking changes in the Earth’s orbit to the diverse climatic responses (temperature and atmospheric greenhouse gas concentrations). To construct the chronology, new measurements from the oldest continuous ice core as well as glaciological modeling estimates were combined in a statistical model.
Stephan Räss, Peter Nyfeler, Paul Wheeler, Will Price, and Markus Christian Leuenberger
Atmos. Meas. Tech., 16, 4489–4505, https://doi.org/10.5194/amt-16-4489-2023, https://doi.org/10.5194/amt-16-4489-2023, 2023
Short summary
Short summary
Due to technological advances clumped-isotope studies have gained importance in recent years. Typically, these studies are performed with high-resolution isotope ratio mass spectrometers (IRMSs) along with a changeover-valve-based dual-inlet system (DIS). We are taking a different approach, namely performing clumped-isotope measurements with a compact low-resolution IRMS with an open-split-based DIS. Currently, we are working with pure-oxygen gas for which we are providing a proof of concept.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Andreas Plach, Rolf Rüfenacht, Simone Kotthaus, and Markus Leuenberger
EGUsphere, https://doi.org/10.5194/egusphere-2022-1019, https://doi.org/10.5194/egusphere-2022-1019, 2022
Preprint archived
Short summary
Short summary
Greenhouse gases emissions are contributing to global warming and it is essential to better understand where they originate from and how they are transported. In this study we analyze greenhouse gas observations at a Swiss tall tower where measurements are taken more than 200 m above ground and investigate their origin by looking at the condition of the atmosphere at the time of the observations. We find that most pollution at this site is caused from emissions transported from further away.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Tito Arosio, Malin M. Ziehmer-Wenz, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-406, https://doi.org/10.5194/bg-2020-406, 2020
Revised manuscript not accepted
Short summary
Short summary
A recent analysis of stable isotopes of samples from larch and cembran trees, revealed that δD and δ18O exhibit no trends in adult trees, but trends in the juvenile period. In this work we applied a correlation analysis on different cambial age to verify if these changes were correlated with tree-ring width values. The results prove a significant correlation between tree-ring-width and both hydrogen and oxygen stable isotopes before 100 year of cambial age, but not afterwards, in both species.
Tito Arosio, Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 17, 4871–4882, https://doi.org/10.5194/bg-17-4871-2020, https://doi.org/10.5194/bg-17-4871-2020, 2020
Short summary
Short summary
Stable isotopes in tree-ring cellulose are tools for climatic reconstructions, but interpretation is challenging due to nonclimate trends. We analyzed the tree-age trends in tree-ring isotopes of deciduous larch and evergreen cembran pine. Samples covering the whole Holocene were collected at the tree line in the Alps. For cambial ages over 100 years, we prove the absence of age trends in δD, δ18O, and δ13C for both species. For lower cambial ages, trends differ for each isotope and species.
Michael Döring and Markus Christian Leuenberger
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-132, https://doi.org/10.5194/cp-2020-132, 2020
Manuscript not accepted for further review
Short summary
Short summary
We analyze Holocene temperatures reconstructed from gas-stable-isotope species measured on ancient air extracted from a Greenland ice core. Also, we compare two state of the art firn-models which are needed for the inversion of the gas-isotope data to paleo-temperature and provide detailed uncertainty estimations for the reconstructed temperature estimates. Finally, we compare our reconstructed temperatures to two recent reconstructions based on the same gas-isotope data as used here.
Ece Satar, Peter Nyfeler, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 119–130, https://doi.org/10.5194/amt-13-119-2020, https://doi.org/10.5194/amt-13-119-2020, 2020
Short summary
Short summary
To ensure the best preparation and measurement conditions for trace gases, usage of coated materials is in demand in gas metrology and atmospheric measurement communities. In this article, the previously introduced aluminum measurement chamber is used to investigate materials such as glass, aluminum, copper, brass, steel and three different commercially available coatings. Our measurements focus on temperature and pressure dependencies for the species CO2, CO, CH4 and H2O using a CRDS analyzer.
Ece Satar, Peter Nyfeler, Bernhard Bereiter, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 101–117, https://doi.org/10.5194/amt-13-101-2020, https://doi.org/10.5194/amt-13-101-2020, 2020
Short summary
Short summary
Good-quality measurements of atmospheric trace gases are only possible with regular calibrations and stable measurements from the standard cylinders. This study investigates instabilities due to surface effects on newly built aluminum and steel cylinders. We present measurements over a set of temperature and pressure ranges for the amount fractions of CO2, CO, CH4 and H2O using a commercial and a novel laser spectroscopic analyzer.
Tesfaye A. Berhanu, John Hoffnagle, Chris Rella, David Kimhak, Peter Nyfeler, and Markus Leuenberger
Atmos. Meas. Tech., 12, 6803–6826, https://doi.org/10.5194/amt-12-6803-2019, https://doi.org/10.5194/amt-12-6803-2019, 2019
Short summary
Short summary
Accurate measurement of variations in atmospheric O2 can provide useful information about atmospheric, biospheric, and oceanic processes, which is a challenge for existing measurement techniques. Here, we introduce a newly built high-precision, stable CRDS analyzer (Picarro G2207) that can measure O2 mixing ratios with a short-term precision of < 1 ppm and only requires calibration every 12 h. Measurements from tower and mountain sites are also presented.
Michael Döring and Markus Christian Leuenberger
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-132, https://doi.org/10.5194/cp-2019-132, 2019
Manuscript not accepted for further review
Short summary
Short summary
We analyse Holocen temperatures reconstructed from gas-stable-isotope species measured on ancient air extracted from a Greenland ice core. Also, we compare two state of the art firn-models which are needed for the inversion of the gas-isotope data to paleo-temperature and provide detailed uncertainty estimations for the reconstructed temperature estimates. Finally, we compare our reconstructed temperatures to two recent reconstructions based on the same gas-isotope data as used here.
Michael Döring and Markus C. Leuenberger
Clim. Past, 14, 763–788, https://doi.org/10.5194/cp-14-763-2018, https://doi.org/10.5194/cp-14-763-2018, 2018
Short summary
Short summary
We present a novel approach for ice-core-based temperature reconstructions, which is based on gas-isotope data measured on enclosed air bubbles in ice cores. The processes of air movement and enclosure are highly temperature dependent due to heat diffusion in and densification of the snow and ice. Our method inverts a model, which describes these processes, to desired temperature histories. This paper examines the performance of our novel approach on different synthetic isotope-data scenarios.
Ye Yuan, Ludwig Ries, Hannes Petermeier, Martin Steinbacher, Angel J. Gómez-Peláez, Markus C. Leuenberger, Marcus Schumacher, Thomas Trickl, Cedric Couret, Frank Meinhardt, and Annette Menzel
Atmos. Meas. Tech., 11, 1501–1514, https://doi.org/10.5194/amt-11-1501-2018, https://doi.org/10.5194/amt-11-1501-2018, 2018
Short summary
Short summary
This paper presents a novel statistical method, ADVS, for baseline selection of representative CO2 data at elevated mountain measurement stations. It provides insights on how data processing techniques are critical for measurements and data analyses. Compared with other statistical methods, our method appears to be a good option as a generalized approach with improved comparability, which is important for research on measurement site characteristics and comparisons between stations.
Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 15, 1047–1064, https://doi.org/10.5194/bg-15-1047-2018, https://doi.org/10.5194/bg-15-1047-2018, 2018
Short summary
Short summary
Cellulose content (CC (%)) series from two high-Alpine species, Larix decidua Mill. (European larch, LADE) and Pinus cembra L. (Swiss stone pine, PICE) are investigated in modern wood samples and Holocene wood remains from the Early and mid-Holocene. Trends in modern and Holocene time series as well as climate–cellulose relationships for modern trees in the Alps show high potential for CC (%) to be established as novel supplementary proxy in dendroclimatology.
Tesfaye A. Berhanu, Sönke Szidat, Dominik Brunner, Ece Satar, Rüdiger Schanda, Peter Nyfeler, Michael Battaglia, Martin Steinbacher, Samuel Hammer, and Markus Leuenberger
Atmos. Chem. Phys., 17, 10753–10766, https://doi.org/10.5194/acp-17-10753-2017, https://doi.org/10.5194/acp-17-10753-2017, 2017
Short summary
Short summary
Fossil fuel CO2 is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Such accurate quantification can be conducted based on radiocarbon measurements. In this study, we present radiocarbon measurements from a tall tower site in Switzerland. From these measurements, we have observed seasonally varying fossil fuel CO2 contributions and a biospheric CO2 component that varies diurnally and seasonally.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Michael F. Schibig, Emmanuel Mahieu, Stephan Henne, Bernard Lejeune, and Markus C. Leuenberger
Atmos. Chem. Phys., 16, 9935–9949, https://doi.org/10.5194/acp-16-9935-2016, https://doi.org/10.5194/acp-16-9935-2016, 2016
Short summary
Short summary
Two CO2 time series measured at the High Alpine Research Station Jungfraujoch, Switzerland (3580 m a.s.l.), in the period from 2005 to 2013 were compared. One data set was measured in situ whereas the other data set was measured in the column above Jungfraujoch. The trends of the column integrated and the in situ data set are in good agreement, the amplitude of the in situ data set is ca. two times the amplitude of the column integrated data set, because it is closer to the sources and sinks.
Tesfaye Ayalneh Berhanu, Ece Satar, Rudiger Schanda, Peter Nyfeler, Hanspeter Moret, Dominik Brunner, Brian Oney, and Markus Leuenberger
Atmos. Meas. Tech., 9, 2603–2614, https://doi.org/10.5194/amt-9-2603-2016, https://doi.org/10.5194/amt-9-2603-2016, 2016
Short summary
Short summary
In this manuscript, we have presented Co, CO2 and CH4 measurement data from an old radio tower tower (217.5 m) at Beromunster, Switzerland. From about 2 years of continuous CO, CO2 and CH4 measurement at five different heights, we have determined a long-term reproducibility of 2.79 ppb, 0.05 ppm and 0.29 ppb for CO, CO2 and CH4, respectively, compliant with the GAW requirements. We have also observed seasonal and diurnal variation of these species.
Ece Satar, Tesfaye A. Berhanu, Dominik Brunner, Stephan Henne, and Markus Leuenberger
Biogeosciences, 13, 2623–2635, https://doi.org/10.5194/bg-13-2623-2016, https://doi.org/10.5194/bg-13-2623-2016, 2016
Short summary
Short summary
Beromünster tall tower is the flagship of the densely placed Swiss greenhouse gas observation network (CarboCount CH). In this research article we report the first 2 years of the continuous greenhouse gas measurements using cavity ring down spectroscopy analyzer from this tall tower. We have adopted a purely observation based, multi-species and multi-level approach to characterize the site with respect to sources and sinks of natural and anthropogenic origin at diurnal to annual timescales.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
Stephan Henne, Dominik Brunner, Brian Oney, Markus Leuenberger, Werner Eugster, Ines Bamberger, Frank Meinhardt, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, https://doi.org/10.5194/acp-16-3683-2016, 2016
Short summary
Short summary
Greenhouse gas emissions can be assessed by "top-down" methods that combine atmospheric observations, a transport model and a mathematical optimisation framework. Here, we apply such a top-down method to the methane emissions of Switzerland, utilising observations from the recently installed CarboCount-CH network. Our Swiss total emissions largely agree with those of the national "bottom-up" inventory, whereas regional differences suggest lower than reported emissions from manure handling.
M. C. Leuenberger, M. F. Schibig, and P. Nyfeler
Atmos. Meas. Tech., 8, 5289–5299, https://doi.org/10.5194/amt-8-5289-2015, https://doi.org/10.5194/amt-8-5289-2015, 2015
Short summary
Short summary
Adsorption/desorption effects of trace gases in gas cylinders were investigated. Our measurements indicate a rather strong effect on steel cylinders for CO2 that becomes easily visible through enhanced concentrations for low (<20 bars) gas pressure. Much smaller effects are observed for CO and CH4. Significantly smaller effects are measured for all gas species investigated on aluminium cylinders. Careful selection of gas cylinders for high-precision calibration purposes is recommended.
T. Kobashi, T. Ikeda-Fukazawa, M. Suwa, J. Schwander, T. Kameda, J. Lundin, A. Hori, H. Motoyama, M. Döring, and M. Leuenberger
Atmos. Chem. Phys., 15, 13895–13914, https://doi.org/10.5194/acp-15-13895-2015, https://doi.org/10.5194/acp-15-13895-2015, 2015
Short summary
Short summary
We find that argon/nitrogen ratios of trapped air in the GISP2 ice core on “gas ages” are significantly negatively correlated with accumulation rate changes over the past 6000 years. Lines of evidence indicate that changes in overloading pressure at bubble closeoff depths induced the gas fractionation in closed bubbles. Further understanding of the fractionation processes may lead to a new proxy for the past temperature and accumulation rate.
B. Oney, S. Henne, N. Gruber, M. Leuenberger, I. Bamberger, W. Eugster, and D. Brunner
Atmos. Chem. Phys., 15, 11147–11164, https://doi.org/10.5194/acp-15-11147-2015, https://doi.org/10.5194/acp-15-11147-2015, 2015
Short summary
Short summary
We present a detailed analysis of a new greenhouse gas measurement network
in the Swiss Plateau, situated between the Jura mountains and the Alps. We
find the network's measurements to be information rich and suitable
for studying surface carbon fluxes of the study region. However, we are
limited by the high-resolution (2km) atmospheric transport model's ability
to simulate meteorology at the individual measurement stations, especially
at those situated in rough terrain.
M. S. Studer, R. T. W. Siegwolf, M. Leuenberger, and S. Abiven
Biogeosciences, 12, 1865–1879, https://doi.org/10.5194/bg-12-1865-2015, https://doi.org/10.5194/bg-12-1865-2015, 2015
Short summary
Short summary
We present a new technique to label organic matter (OM) at its place of formation by the application of 13C, 18O and 2H through the gaseous phase. The label diffused into leaves was incorporated into assimilates and was detected in plant tissues. This technique can be applied in soil sciences, e.g. to trace the decomposition pathways of soil OM inputs, or in plant physiology and palaeoclimatic reconstruction, e.g. to further investigate the origin of the 18O and 2H signal in tree ring cellulose.
M. F. Schibig, M. Steinbacher, B. Buchmann, I. T. van der Laan-Luijkx, S. van der Laan, S. Ranjan, and M. C. Leuenberger
Atmos. Meas. Tech., 8, 57–68, https://doi.org/10.5194/amt-8-57-2015, https://doi.org/10.5194/amt-8-57-2015, 2015
M. C. Leuenberger, M. F. Schibig, and P. Nyfeler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-19293-2014, https://doi.org/10.5194/acpd-14-19293-2014, 2014
Revised manuscript not accepted
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
I. Mariani, A. Eichler, T. M. Jenk, S. Brönnimann, R. Auchmann, M. C. Leuenberger, and M. Schwikowski
Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, https://doi.org/10.5194/cp-10-1093-2014, 2014
P. Kindler, M. Guillevic, M. Baumgartner, J. Schwander, A. Landais, and M. Leuenberger
Clim. Past, 10, 887–902, https://doi.org/10.5194/cp-10-887-2014, https://doi.org/10.5194/cp-10-887-2014, 2014
M. Baumgartner, P. Kindler, O. Eicher, G. Floch, A. Schilt, J. Schwander, R. Spahni, E. Capron, J. Chappellaz, M. Leuenberger, H. Fischer, and T. F. Stocker
Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, https://doi.org/10.5194/cp-10-903-2014, 2014
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, https://doi.org/10.5194/cp-9-1715-2013, 2013
I. T. van der Laan-Luijkx, S. van der Laan, C. Uglietti, M. F. Schibig, R. E. M. Neubert, H. A. J. Meijer, W. A. Brand, A. Jordan, J. M. Richter, M. Rothe, and M. C. Leuenberger
Atmos. Meas. Tech., 6, 1805–1815, https://doi.org/10.5194/amt-6-1805-2013, https://doi.org/10.5194/amt-6-1805-2013, 2013
M. Guillevic, L. Bazin, A. Landais, P. Kindler, A. Orsi, V. Masson-Delmotte, T. Blunier, S. L. Buchardt, E. Capron, M. Leuenberger, P. Martinerie, F. Prié, and B. M. Vinther
Clim. Past, 9, 1029–1051, https://doi.org/10.5194/cp-9-1029-2013, https://doi.org/10.5194/cp-9-1029-2013, 2013
E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié
Clim. Past, 9, 983–999, https://doi.org/10.5194/cp-9-983-2013, https://doi.org/10.5194/cp-9-983-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vehicle-based in situ observations of the water vapor isotopic composition across China: spatial and seasonal distributions and controls
Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region
Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)
Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia
Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean
Vertical profile observations of water vapor deuterium excess in the lower troposphere
A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain
Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture
The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights
Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region
Interpreting the 13C ∕ 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China
The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe
Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer
Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements
Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity
Isotopic signatures of production and uptake of H2 by soil
Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau
Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures
Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe
The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland
Deuterium excess as a proxy for continental moisture recycling and plant transpiration
On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica
Kinetic fractionation of gases by deep air convection in polar firn
Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet
Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado
Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)
Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent
Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia
A map of radon flux at the Australian land surface
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Shaakir Shabir Dar, Prosenjit Ghosh, Ankit Swaraj, and Anil Kumar
Atmos. Chem. Phys., 20, 11435–11449, https://doi.org/10.5194/acp-20-11435-2020, https://doi.org/10.5194/acp-20-11435-2020, 2020
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Olivia E. Salmon, Lisa R. Welp, Michael E. Baldwin, Kristian D. Hajny, Brian H. Stirm, and Paul B. Shepson
Atmos. Chem. Phys., 19, 11525–11543, https://doi.org/10.5194/acp-19-11525-2019, https://doi.org/10.5194/acp-19-11525-2019, 2019
Short summary
Short summary
We conducted airborne vertical profile measurements of water vapor stable isotopes to examine how boundary layer, cloud, and mixing processes influence the vertical structure of deuterium excess in the lower troposphere. We discuss reasons our observations are consistent with water vapor isotope theory on some days and not others. Deuterium excess may be useful for understanding complex processes occurring at the top of the boundary layer, including cloud formation, evaporation, and air mixing.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Ghulam Jeelani, Rajendrakumar D. Deshpande, Michal Galkowski, and Kazimierz Rozanski
Atmos. Chem. Phys., 18, 8789–8805, https://doi.org/10.5194/acp-18-8789-2018, https://doi.org/10.5194/acp-18-8789-2018, 2018
Short summary
Short summary
Analysis of stable isotope composition of daily precipitation collected along the southern foothills of the Himalayas was used to gain deeper insight into the mechanisms controlling isotopic composition of precipitation. The results suggested that the decrease in isotopic composition in the course of ISM evolution stems from large-scale recycling of moisture-driven monsoonal circulation. High d-excess of rainfall is attributed to moisture of continental origin released into the atmosphere.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
Annie L. Putman, Xiahong Feng, Leslie J. Sonder, and Eric S. Posmentier
Atmos. Chem. Phys., 17, 4627–4639, https://doi.org/10.5194/acp-17-4627-2017, https://doi.org/10.5194/acp-17-4627-2017, 2017
Short summary
Short summary
Water vapor source and transport are linked to the stable isotopes of precipitation of 70 storms at Barrow, AK, USA. Barrow's vapor came from the North Pacific in winter and the Arctic Ocean in summer. Half the isotopic variability was explained by the size of the temperature drop from the vapor source to Barrow, the evaporation conditions, and whether the vapor traveled over mountains. Because isotopes reflect the regional meteorology they may be early indicators of Arctic hydroclimatic change.
Jiaping Xu, Xuhui Lee, Wei Xiao, Chang Cao, Shoudong Liu, Xuefa Wen, Jingzheng Xu, Zhen Zhang, and Jiayu Zhao
Atmos. Chem. Phys., 17, 3385–3399, https://doi.org/10.5194/acp-17-3385-2017, https://doi.org/10.5194/acp-17-3385-2017, 2017
Short summary
Short summary
The Yangtze River Delta is one of the most industrialized regions in China. In situ optical isotopic measurement in Nanjing, a city located in the Delta, showed unusually high atmospheric δ13C signals in the summer (−7.44 ‰, July 2013 mean), which we attributed to the influence of cement production in the region. Flux partitioning calculations revealed that natural ecosystems in the region were a negligibly small source of atmospheric CO2.
Emanuel Christner, Martin Kohler, and Matthias Schneider
Atmos. Chem. Phys., 17, 1207–1225, https://doi.org/10.5194/acp-17-1207-2017, https://doi.org/10.5194/acp-17-1207-2017, 2017
Short summary
Short summary
Post-depositional fractionation of stable water isotopes due to fractioning surface evaporation introduces uncertainty to isotope applications such as the reconstruction of paleotemperatures, paleoaltimetry, and the investigation of ground water formation. In this paper we combine measurements of stable water isotopes in near-surface water vapor with a Lagrangian isotope model to investigate isotope fractionation during the evaporation of surface-layer snow in central Europe.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Timothy J. Griffis, Jeffrey D. Wood, John M. Baker, Xuhui Lee, Ke Xiao, Zichong Chen, Lisa R. Welp, Natalie M. Schultz, Galen Gorski, Ming Chen, and John Nieber
Atmos. Chem. Phys., 16, 5139–5157, https://doi.org/10.5194/acp-16-5139-2016, https://doi.org/10.5194/acp-16-5139-2016, 2016
Short summary
Short summary
Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle. We present the first multi-annual isotope (oxygen and deuterium) water vapor observations from a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the atmosphere. The results show a relatively high degree of summertime water recycling within the region (~30 % mean and ~60 % maximum).
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
Sally Newman, Xiaomei Xu, Kevin R. Gurney, Ying Kuang Hsu, King Fai Li, Xun Jiang, Ralph Keeling, Sha Feng, Darragh O'Keefe, Risa Patarasuk, Kam Weng Wong, Preeti Rao, Marc L. Fischer, and Yuk L. Yung
Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, https://doi.org/10.5194/acp-16-3843-2016, 2016
Short summary
Short summary
Combining 14C and 13C data from the Los Angeles, CA megacity with background data allows source attribution of CO2 emissions among biosphere, natural gas, and gasoline. The 8-year record of CO2 emissions from fossil fuel burning is consistent with "The Great Recession" of 2008–2010. The long-term trend and source attribution are consistent with government inventories. Seasonal patterns agree with the high-resolution Hestia-LA emission data product, when seasonal wind directions are considered.
Q. Chen, M. E. Popa, A. M. Batenburg, and T. Röckmann
Atmos. Chem. Phys., 15, 13003–13021, https://doi.org/10.5194/acp-15-13003-2015, https://doi.org/10.5194/acp-15-13003-2015, 2015
Short summary
Short summary
We investigated soil production and uptake of H2 and associated isotope effects. Uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission where N2 fixing legume was present. The fractionation constant during soil uptake was about 0.945 and it did not show positive correlation with deposition velocity. The isotopic composition of H2 emitted from soil with legume was about -530‰, which is less deuterium-depleted than isotope equilibrium between H2O and H2.
W. Yu, L. Tian, Y. Ma, B. Xu, and D. Qu
Atmos. Chem. Phys., 15, 10251–10262, https://doi.org/10.5194/acp-15-10251-2015, https://doi.org/10.5194/acp-15-10251-2015, 2015
H. Delattre, C. Vallet-Coulomb, and C. Sonzogni
Atmos. Chem. Phys., 15, 10167–10181, https://doi.org/10.5194/acp-15-10167-2015, https://doi.org/10.5194/acp-15-10167-2015, 2015
Short summary
Short summary
Based on summer measurements of δ18O and δD in the atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation, this paper explores the main drivers of isotopic signal variability. After having classified the data according to the main regional air mass trajectories, average diurnal cycles are discussed with regards to the contribution of local evaporation to the ground level atmospheric vapour.
M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, and A. Jeričević
Atmos. Chem. Phys., 14, 9567–9581, https://doi.org/10.5194/acp-14-9567-2014, https://doi.org/10.5194/acp-14-9567-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
R. Weller, I. Levin, D. Schmithüsen, M. Nachbar, J. Asseng, and D. Wagenbach
Atmos. Chem. Phys., 14, 3843–3853, https://doi.org/10.5194/acp-14-3843-2014, https://doi.org/10.5194/acp-14-3843-2014, 2014
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
D. Noone, C. Risi, A. Bailey, M. Berkelhammer, D. P. Brown, N. Buenning, S. Gregory, J. Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe
Atmos. Chem. Phys., 13, 1607–1623, https://doi.org/10.5194/acp-13-1607-2013, https://doi.org/10.5194/acp-13-1607-2013, 2013
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 11679–11694, https://doi.org/10.5194/acp-12-11679-2012, https://doi.org/10.5194/acp-12-11679-2012, 2012
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 9855–9863, https://doi.org/10.5194/acp-12-9855-2012, https://doi.org/10.5194/acp-12-9855-2012, 2012
Y. Igarashi, H. Fujiwara, and D. Jugder
Atmos. Chem. Phys., 11, 7069–7080, https://doi.org/10.5194/acp-11-7069-2011, https://doi.org/10.5194/acp-11-7069-2011, 2011
A. D. Griffiths, W. Zahorowski, A. Element, and S. Werczynski
Atmos. Chem. Phys., 10, 8969–8982, https://doi.org/10.5194/acp-10-8969-2010, https://doi.org/10.5194/acp-10-8969-2010, 2010
Cited articles
Ambach, W., Dansgaard, W., Eisner, H., and Møller, J.: The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps, Tellus B, 20, 595–600, 1968.
Baker, D., Moser, H., Oerter, H., Stichler, W. and Reinwarth, O.: Comparison of the 2H and 18O content of ice cores from a temperate Alpine glacier (Vernagtferner, Austria) with climatic data, Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 389–395, 1985.
Blisniuk, P. M. and Stern, L. A.: Stable isotope paleoaltimetry: A critical review, Am. J. Sci., 305, 1033–1074, 2005.
Bowen, G. J.: Isoscapes: Spatial pattern in isotopic biogeochemistry, Annu. Rev. Earth Pl. Sc., 38, 161–187, 2010a.
Bowen, G. J.: Statistical and geostatistical mapping of precipitation water isotope ratios, in: Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping, edited by: West, J. B., Bowen, G. J., Dawson, T. E., and Tu, K. P., New York, Springer, 139–160, 2010b.
Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of modern meteoric precipitation, Water Resour. Res. 39, 1299, https://doi.org/10.1029/2003WR002086, 2003.
Bowen, G. J. and Wilkinson, B.: Spatial distribution of δ18O in meteoric precipitation, Geology, 30, 315–318, 2002.
Chimani, B., Matulla, C., Böhm, R., and Hofstätter, M.: A new high resolution absolute temperature grid for the Greater Alpine Region back to 1780, Int. J. Climatol., 33, 2129–2141, https://doi.org/10.1002/joc.3574, 2013.
Cressie, N.: Statistics for spatial data, New York, Wiley, 1993.
Durran, D. R. and Klemp, J. B.: On the effects of moisture on the Brunt–Väisälä frequency, J. Atmos. Sci., 39, 2152–2158, 1982.
Ehlers, T. A. and Poulsen, C. J.: Influence of Andean uplift on climate and paleoaltimetry estimates, Earth Planet. Sc. Lett., 281, 238–248, 2009.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Frei, C. and Schär, C.: A precipitation climatology of the Alps from high-resolution rain-gauge observations, Int. J. Climatol., 18, 873–900, https://doi.org/ 10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9, 1998.
Fröhlich, K., Kralik, M., Papesch, W., Rank, D., Scheifinger, H., and Stichler, W.: Deuterium excess in precipitation of Alpine Regions – Evaluation of sub-cloud evaporation and moisture recycling, Isotopes Environ. Health Stud., 44, 61–70, 2008.
Gao, J., Masson-Delmotte, V., Risi, C., He, Y., and Yao, T.: What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam, Tellus B, 65, 21043, https://doi.org/10.3402/tellusb.v65i0.21043, 2013.
Galewsky, J.: Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies, Geology, 37, 791–794, https://doi.org/10.1130/G30008A.1, 2009.
Hanna, S. R.: The thickness of the planetary boundary layer, Atmos. Environ., 3, 519–536, 1969.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008jd010201, 2008.
Henne, S., Furger, M., Nyeki, S., Steinbacher, M., Neininger, B., de Wekker, S. F. J., Dommen, J., Spichtinger, N., Stohl, A., and Prévôt, A. S. H.: Quantification of topographic venting of boundary layer air to the free troposphere, Atmos. Chem. Phys., 4, 497–509, https://doi.org/10.5194/acp-4-497-2004, 2004.
Holdsworth, G., Fogarasi, S., and Krouse, H. R.: Variation of the stable isotopes of water with altitude in the Saint Elias Mountains of Canada, J. Geophys. Res., 96, 7483–7494, https://doi.org/10.1029/91JD00048, 1991.
Holko, L., Dosa, M., Michalko, J., Kostka, Z., and Sanda, M.: Isotopes of Oxygen-18 and Deuterium in precipitation in Slovakia, J. Hydrol. Hydromech., 60, 265–276, 2012.
Hunjak, T., Lutz, H. O., and Roller-Lutz, Z.: Stable isotope composition of the meteoric precipitation in Croatia, Isotopes Environ. Health Stud., 49, 336–345, https://doi.org/10.1080/10256016.2013.816697, 2013.
IAEA: Global Network of Isotopes in Precipitation, The GNIP Database 2010, available at: http://www.isohis.iaea.org (last access: 9 July 2012), 2010.
Kralik, M., Papesch, W., and Stichler, W.: Austrian Network of Isotopes in Precipitation (ANIP): Quality assurance and climatological phenomenon in one of the oldest and densest networks in the world, Isot. Hydrol. Integr. Water Resour. Manag., 23, 146–149, 2003.
Liebminger, A., Haberhauer, G., Varmuza, K. G., Papesch, W., and Heiss, G.: Modeling the Oxygen 18 concentration in precipitation with ambient climatic and geographic parameters, Geophys. Res. Lett., 33, L05808, https://doi.org/10.1029/2005GL025049, 2006.
Liebminger, A., Haberhauer, G., Papesch, W., and Heiss, G.: Footprints of climate in groundwater and precipitation, Hydrol. Earth Syst. Sci., 11, 785–791, https://doi.org/10.5194/hess-11-785-2007, 2007.
Liotta, M., Grassa, F., D'Alessandro, W., Favara, R., Gagliano Candela, E., Pisciotta, A., and Scaletta, C.: Isotopic composition of precipitation and groundwater in Sicily, Italy, Appl. Geochem., 34, 199–206, https://doi.org/10.1016/j.apgeochem.2013.03.012, 2013.
Longinelli, A. and Selmo, E.: Isotopic composition of precipitation in Italy: a first overall map, J. Hydrol., 270, 75–88, 2003.
Longinelli, A. and Selmo, E.: Isotopic composition of precipitation in Northern Italy: Reverse effects of anomalous climatic events, J. Hydrol., 329, 471–476, 2006.
Lykoudis, S. P. and Argiriou, A. A.: Gridded data set of the stable isotopic composition of precipitation over the eastern and central Mediterranean, J. Geophys. Res., 112, D18107, https://doi.org/10.1029/2007JD008472, 2007.
Lykoudis, S. P., Argiriou, A. A., and Dotsika, E.: Spatially interpolated time series of δ18}{\rm O in Eastern Mediterranean precipitation, Global Planet. Change, 71, 150–159, 2010.
Mariani, I., Eichler, A., Brönnimann, S., Auchmann, R., Jenk, T. M., Leuenberger, M. C., and Schwikowski, M.: Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001, Clim. Past Discuss., 8, 5867–5891, https://doi.org/10.5194/cpd-8-5867-2012, 2012.
Meehan, T. D., Giermakowski, J. T., and Cyran, P. M.: GIS-based model of stable hydrogen isotope ratios in North American growing-season precipitation for use in animal movement studies, Isotopes Environ. Health Stud., 40, 291–300, 2004.
Moser, H. and Stichler, W.: Deuterium and oxygen-18 contents as an index of the properties of snow cover, Symposium on Snow Mechanics, IAHS Publ. 114, 122–135, 1974.
Nyeki, S., Kalberer, M., Colbeck, I., De Wekker, S., Furger, M., Gaggeler, H. W., Kossmann, M., Lugauer, M., Steyn, D., Weingartner, E., Wirth, M., and Baltensperger, U.: Convective boundary layer evolution to 4 km asl over high-alpine terrain: airborne lidar observations in the Alps, Geophys. Res. Lett., 27, 689–692, 2000.
Rotunno, R. and Houze, R. A.: Lessons on orographic precipitation from the Mesoscale Alpine Programme, Q. J. Roy. Meteor. Soc., 133, 811–830, https://doi.org/10.1002/qj.67, 2007.
Rowley, D. B. and Garzione, C. N.: Stable isotope-based paleolatimetry, Annu. Rev. Earth Pl. Sc., 35, 463–508, 2007.
Scherrer, S. C., Croci-Maspoli, M., van Geijtenbeek, D., Hotz, C., Frei, C., and Appenzeller, C.: Operational quality control of daily precipitation using spatio-climatological plausibility testing, Meteorol. Z., 20, 397–407, https://doi.org/10.1127/0941-2948/2011/0236, 2011.
Schwikowski, M. and Eichler, A.: Alpine Glaciers as Archives of Atmospheric Deposition, in: Alpine Waters, edited by: Bundi, U., 141–150, Springer-Verlag Berlin, Heidelberger Platz 3, 14197 Berlin, Germany, https://doi.org/10.1007/978-3-540-88275-6_7, 2010.
Schotterer, U., Fröchlich, K., Gäggeler, H. W., Sandjordj, S., and Stichler, W.: Isotope records from Mongolian and Alpine ice cores as climate indicators, Clim. Change, 36, 518–530, 1997.
Schotterer, U., Stocker, T., Bürki, H., Hunziker, J., Kozel, R., Grasso, D. A., and Tripet, J.-P.: Das Schweizer Isotopen-Messnetz. Trends 1992–1999, Gas-Wasser-Abwasser, 10, 733–741, 2000.
Schotterer, U., Schürch, M., Rickli, R., and Stichler, W.: Wasserisotopen in der Schweiz, Gas-Wasser-Abwasser, 12, 1073–1081, 2010.
Schöner, W., Auer, I., Böhm, R., Keck, L., and Wagenbach, D: Spatial representativity of air-temperature information from instrumental and ice-core-based isotope records in the European Alps, Ann. Glaciol., 35, 157–161, 2002.
Schürch, M., Kozel, R., Schotterer, U., and Tripet, J. P.: Observation of isotopes in the water cycle – the Swiss National Network (NISOT), Environ. Geol., 45, 1–11, 2003.
Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J. C., Jacobson, A. R., and Medeiros, B.: Climatology of the planetary boundary layer over the continental United States and Europe, J. Geophys. Res., 117, D17106, https://doi.org/10.1029/2012JD018143, 2012.
Siegenthaler, U. and Oeschger, H.: Correlation of 18O in precipitation with temperature and altitude, Nature, 285, 314–317, 1980.
Sodemann, H. and Zubler, E.: Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002, Int. J. Climatol., 30, 947–961, 2010.
Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., and Aggarwal, P. K.: Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalized climatic regression models, Hydrol. Earth Syst. Sci., 17, 4713–4728, https://doi.org/10.5194/hess-17-4713-2013, 2013.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E, Lin, P. N., Henderson, K. A, Cole-Dai, J., Bolzan, J. F, and Liu, K. B.: Late Glacial Stage and Holocene tropical ice core records from Huascaran, Peru, Science, 269, 46–50, 1995.
Vachon, R. W., Welker, J. M., White, J. W. C., and Vaughn, B. H.: Monthly precipitation isoscapes (δ18O) of the United States: Connections with surface temperatures, moisture source conditions, and air mass trajectories, J. Geophys. Res., 115, D21126, https://doi.org/10.1029/2010jd014105, 2010.
von Engeln, A. and Teixeira, J.: A planetary boundary layer height climatology derived from ECMWF re-analysis data, J. Climate, 26, 6575–6590, https://doi.org/10.1175/JCLI-D-12-00385.1, 2013.
Welker, J. M.: ENSO effects on δ18O, δ2H and d-excess values in precipitation across the U.S. using a high-density, long-term network (USNIP), Rapid Commun. Mass Sp., 26, 1893–1898, 2012.
West, J. B., Bowen, G. J., Dawson, T. E., and Tu, K. P. (Eds): Isoscapes Understanding movement, pattern, and process on Earth through isotope mapping, New York, Springer, 2010.
Altmetrics
Final-revised paper
Preprint