Articles | Volume 14, issue 3
https://doi.org/10.5194/acp-14-1587-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-1587-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow
T. Bartels-Rausch
Laboratory of Radio and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
H.-W. Jacobi
CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (UMR5183), 38041 Grenoble, France
Univ. Grenoble Alpes, LGGE (UMR5183), 38041 Grenoble, France
T. F. Kahan
Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York, USA
J. L. Thomas
UPMC Univ. Paris 06, UMR8190, CNRS/INSU – Univ. Versailles St.-Quentin, LATMOS-IPSL, Paris, France
University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA 90095, USA
E. S. Thomson
Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, 41296, Gothenburg, Sweden
J. P. D. Abbatt
Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
M. Ammann
Laboratory of Radio and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
J. R. Blackford
Institute for Materials and Processes, School of Engineering, King's Buildings, The University of Edinburgh, EH9 3JL, UK
H. Bluhm
Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA 94720, USA
C. Boxe
Department of Chemistry and Environmental Science, Medgar Evers College – City University of New York, Brooklyn, NY 11235, USA
City University of New York, Graduate Center, Department of Chemistry, Department of Earth & Environmental Sciences, Manhattan, NY 10016, USA
F. Domine
Takuvik Joint International Laboratory, Université Laval and CNRS, and Department of Chemistry, 1045 avenue de la médecine, Québec, QC, G1V 0A6, Canada
M. M. Frey
British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
I. Gladich
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
M. I. Guzmán
Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
D. Heger
Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A, 62500 Brno, Czech Republic
RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic
Th. Huthwelker
SLS Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
P. Klán
Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A, 62500 Brno, Czech Republic
RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic
W. F. Kuhs
GZG Abt. Kristallographie, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
M. H. Kuo
Department of Chemical Engineering, Columbia University, New York, NY, USA
S. Maus
Geophysical Institute, University Bergen, 5007 Bergen, Norway
S. G. Moussa
Department of Chemical Engineering, Columbia University, New York, NY, USA
V. F. McNeill
Department of Chemical Engineering, Columbia University, New York, NY, USA
J. T. Newberg
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
J. B. C. Pettersson
Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, 41296, Gothenburg, Sweden
M. Roeselová
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
J. R. Sodeau
Department of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
Related authors
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021, https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Short summary
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air quality of the atmosphere. Here, we investigate the phase changes of sodium chloride. This is of importance as chemical reactions proceed faster in liquid solutions compared to in solid salt and the precise precipitation temperature of sodium chloride is still under debate. We focus on the upper nanometres of sodium chloride–ice samples because of their role as a reactive interface in the environment.
This article is included in the Encyclopedia of Geosciences
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
This article is included in the Encyclopedia of Geosciences
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017, https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
Short summary
In this study we investigated protein nitration and decomposition by light in the presence of NO2 via flow tube measurements. Nitrated proteins have an enhanced allergenic potential but so far nitration was only studied in dark conditions. Under irradiated conditions we found that proteins predominantly decompose while forming nitrous acid (HONO) an important precursor of the OH radical. Unlike other studies on heterogeneous NO2 conversion we found a stable HONO formation over a long period.
This article is included in the Encyclopedia of Geosciences
Goran Gržinić, Thorsten Bartels-Rausch, Andreas Türler, and Markus Ammann
Atmos. Chem. Phys., 17, 6493–6502, https://doi.org/10.5194/acp-17-6493-2017, https://doi.org/10.5194/acp-17-6493-2017, 2017
Short summary
Short summary
Nitrogen oxides (NOx) largely control the ozone budget in the troposphere globally. Dinitrogen pentoxide (N2O5) is an important species as a nighttime reservoir for nitrogen oxides. Loss of N2O5 to aerosol particles is therefore important for the budget of NOx and the oxidation capacity. Here we provide direct evidence for its efficient accommodation into aqueous aerosol particles and its fast dissociation, which has not been elucidated as directly in previous studies.
This article is included in the Encyclopedia of Geosciences
Laura González Palacios, Pablo Corral Arroyo, Kifle Z. Aregahegn, Sarah S. Steimer, Thorsten Bartels-Rausch, Barbara Nozière, Christian George, Markus Ammann, and Rainer Volkamer
Atmos. Chem. Phys., 16, 11823–11836, https://doi.org/10.5194/acp-16-11823-2016, https://doi.org/10.5194/acp-16-11823-2016, 2016
Short summary
Short summary
The sources of radicals at aerosol surfaces are highly uncertain. Here we investigate the HO2 radical production from the UV irradiation of imidazole-2-carboxaldehyde (IC) in bulk aqueous films containing IC and citric acid, as well as IC in ammonium sulfate aerosols. We find that IC is an efficient photosensitizer that forms HO2 radicals from H-donor chemistry. IC is a proxy species for brown carbon in atmospheric aerosols.
This article is included in the Encyclopedia of Geosciences
G. Gržinić, T. Bartels-Rausch, T. Berkemeier, A. Türler, and M. Ammann
Atmos. Chem. Phys., 15, 13615–13625, https://doi.org/10.5194/acp-15-13615-2015, https://doi.org/10.5194/acp-15-13615-2015, 2015
Short summary
Short summary
The heterogeneous loss of dinitrogen pentoxide (N2O5) to citric acid aerosol, a proxy for highly oxygenated secondary organic aerosol, is shown to be substantially lower than to other aqueous organic aerosol proxies investigated previously. This is attributed to the widely changing viscosity within the atmospherically relevant humidity range. It may explain some of the unexpectedly low loss rates of N2O5 to aerosol particles derived from field studies.
This article is included in the Encyclopedia of Geosciences
M. Legrand, S. Preunkert, M. Frey, Th. Bartels-Rausch, A. Kukui, M. D. King, J. Savarino, M. Kerbrat, and B. Jourdain
Atmos. Chem. Phys., 14, 9963–9976, https://doi.org/10.5194/acp-14-9963-2014, https://doi.org/10.5194/acp-14-9963-2014, 2014
T. Bartels-Rausch, S. N. Wren, S. Schreiber, F. Riche, M. Schneebeli, and M. Ammann
Atmos. Chem. Phys., 13, 6727–6739, https://doi.org/10.5194/acp-13-6727-2013, https://doi.org/10.5194/acp-13-6727-2013, 2013
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021, https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Short summary
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air quality of the atmosphere. Here, we investigate the phase changes of sodium chloride. This is of importance as chemical reactions proceed faster in liquid solutions compared to in solid salt and the precise precipitation temperature of sodium chloride is still under debate. We focus on the upper nanometres of sodium chloride–ice samples because of their role as a reactive interface in the environment.
This article is included in the Encyclopedia of Geosciences
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
This article is included in the Encyclopedia of Geosciences
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017, https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
Short summary
In this study we investigated protein nitration and decomposition by light in the presence of NO2 via flow tube measurements. Nitrated proteins have an enhanced allergenic potential but so far nitration was only studied in dark conditions. Under irradiated conditions we found that proteins predominantly decompose while forming nitrous acid (HONO) an important precursor of the OH radical. Unlike other studies on heterogeneous NO2 conversion we found a stable HONO formation over a long period.
This article is included in the Encyclopedia of Geosciences
Goran Gržinić, Thorsten Bartels-Rausch, Andreas Türler, and Markus Ammann
Atmos. Chem. Phys., 17, 6493–6502, https://doi.org/10.5194/acp-17-6493-2017, https://doi.org/10.5194/acp-17-6493-2017, 2017
Short summary
Short summary
Nitrogen oxides (NOx) largely control the ozone budget in the troposphere globally. Dinitrogen pentoxide (N2O5) is an important species as a nighttime reservoir for nitrogen oxides. Loss of N2O5 to aerosol particles is therefore important for the budget of NOx and the oxidation capacity. Here we provide direct evidence for its efficient accommodation into aqueous aerosol particles and its fast dissociation, which has not been elucidated as directly in previous studies.
This article is included in the Encyclopedia of Geosciences
Laura González Palacios, Pablo Corral Arroyo, Kifle Z. Aregahegn, Sarah S. Steimer, Thorsten Bartels-Rausch, Barbara Nozière, Christian George, Markus Ammann, and Rainer Volkamer
Atmos. Chem. Phys., 16, 11823–11836, https://doi.org/10.5194/acp-16-11823-2016, https://doi.org/10.5194/acp-16-11823-2016, 2016
Short summary
Short summary
The sources of radicals at aerosol surfaces are highly uncertain. Here we investigate the HO2 radical production from the UV irradiation of imidazole-2-carboxaldehyde (IC) in bulk aqueous films containing IC and citric acid, as well as IC in ammonium sulfate aerosols. We find that IC is an efficient photosensitizer that forms HO2 radicals from H-donor chemistry. IC is a proxy species for brown carbon in atmospheric aerosols.
This article is included in the Encyclopedia of Geosciences
G. Gržinić, T. Bartels-Rausch, T. Berkemeier, A. Türler, and M. Ammann
Atmos. Chem. Phys., 15, 13615–13625, https://doi.org/10.5194/acp-15-13615-2015, https://doi.org/10.5194/acp-15-13615-2015, 2015
Short summary
Short summary
The heterogeneous loss of dinitrogen pentoxide (N2O5) to citric acid aerosol, a proxy for highly oxygenated secondary organic aerosol, is shown to be substantially lower than to other aqueous organic aerosol proxies investigated previously. This is attributed to the widely changing viscosity within the atmospherically relevant humidity range. It may explain some of the unexpectedly low loss rates of N2O5 to aerosol particles derived from field studies.
This article is included in the Encyclopedia of Geosciences
M. Legrand, S. Preunkert, M. Frey, Th. Bartels-Rausch, A. Kukui, M. D. King, J. Savarino, M. Kerbrat, and B. Jourdain
Atmos. Chem. Phys., 14, 9963–9976, https://doi.org/10.5194/acp-14-9963-2014, https://doi.org/10.5194/acp-14-9963-2014, 2014
T. Bartels-Rausch, S. N. Wren, S. Schreiber, F. Riche, M. Schneebeli, and M. Ammann
Atmos. Chem. Phys., 13, 6727–6739, https://doi.org/10.5194/acp-13-6727-2013, https://doi.org/10.5194/acp-13-6727-2013, 2013
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Enhanced photodegradation of dimethoxybenzene isomers in/on ice compared to in aqueous solution
An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard
Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation
Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air–water interface and of the sea surface microlayer
Ted Hullar, Theo Tran, Zekun Chen, Fernanda Bononi, Oliver Palmer, Davide Donadio, and Cort Anastasio
Atmos. Chem. Phys., 22, 5943–5959, https://doi.org/10.5194/acp-22-5943-2022, https://doi.org/10.5194/acp-22-5943-2022, 2022
Short summary
Short summary
Chemicals are commonly found in snowpacks throughout the world and may be degraded by sunlight; some previous research has reported faster decay rates for chemicals on the surface of snow and ice compared to in water. We found photodegradation on snow can be as much as 30 times faster than in solution for the three dimethoxybenzene isomers. Our computational modeling found light absorbance by dimethoxybenzenes increases on the snow surface, but this only partially explains the decay rate.
This article is included in the Encyclopedia of Geosciences
Dimitri Osmont, Isabel A. Wendl, Loïc Schmidely, Michael Sigl, Carmen P. Vega, Elisabeth Isaksson, and Margit Schwikowski
Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, https://doi.org/10.5194/acp-18-12777-2018, 2018
Short summary
Short summary
This study presents the first long-term and high-resolution refractory black carbon (rBC) ice core record from Svalbard, spanning the last 800 years. Our results show that rBC has had a predominant anthropogenic origin since the beginning of the Industrial Revolution in Europe and that rBC concentrations have been declining in the last 40 years. We discuss the impact of 20th century snowmelt on our record. We reconstruct biomass burning trends prior to 1800 by using a multi-proxy approach.
This article is included in the Encyclopedia of Geosciences
Xin Yang, Vilém Neděla, Jiří Runštuk, Gabriela Ondrušková, Ján Krausko, Ľubica Vetráková, and Dominik Heger
Atmos. Chem. Phys., 17, 6291–6303, https://doi.org/10.5194/acp-17-6291-2017, https://doi.org/10.5194/acp-17-6291-2017, 2017
Short summary
Short summary
A unique environmental electron microscope was used for monitoring the evaporation of salty frost flowers. We observe a cohesive villous brine surface layer facilitating the formation of NaCl microcrystals at temperatures below −10°C as the brine oversaturation is achieved. This finding confirms the increased surface area and thus also the enhanced heterogeneous reactivity; however, no support for the easiness of fragmentation to produce aerosols can be provided.
This article is included in the Encyclopedia of Geosciences
S. Zhou, L. Gonzalez, A. Leithead, Z. Finewax, R. Thalman, A. Vlasenko, S. Vagle, L.A. Miller, S.-M. Li, S. Bureekul, H. Furutani, M. Uematsu, R. Volkamer, and J. Abbatt
Atmos. Chem. Phys., 14, 1371–1384, https://doi.org/10.5194/acp-14-1371-2014, https://doi.org/10.5194/acp-14-1371-2014, 2014
Cited articles
Abbatt, J. P. D.: Interaction of \chemHNO_ 3 with water-ice surfaces at temperatures of the free troposphere, Geophys. Res. Lett., 24, 1479–1482, https://doi.org/10.1029/97GL01403, 1997.
Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction, Chem. Rev., 103, 4783–4800, https://doi.org/10.1021/Cr0206418, 2003.
Abbatt, J.: Atmospheric chemistry: Arctic snowpack bromine release, Nature Geosci, 6, 331–332, https://doi.org/10.1038/ngeo1805, 2013.
Abbatt, J. P. D., Beyer, K. D., Fucaloro, A. F., McMahon, J. R., Wooldridge, P. J., Zhang, R., and Molina, M. J.: Interaction of HCl vapor with water-ice – Implications for the stratosphere, J. Geophys. Res., 97, 15819–15826, https://doi.org/10.1029/92JD01220, 1992.
Abbatt, J. P. D., Bartels-Rausch, T., Ullerstam, M., and Ye, T. J.: Uptake of acetone, ethanol and benzene to snow and ice: Effects of surface area and temperature, Environ. Res. Lett., 3, 045008, https://doi.org/10.1088/1748-9326/3/4/045008, 2008.
Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012.
Abida, O. and Osthoff, H. D.: On the pH dependence of photo-induced volatilization of nitrogen oxides from frozen solutions containing nitrate, Geophys. Res. Lett., 38, L16808, https://doi.org/10.1029/2011GL048517, 2011.
Aguzzi, A., Fluckiger, B., and Rossi, M.: The nature of the interface and the diffusion coefficient of HCl/ice and HBr/ice in the temperature range 190–205 K, Phys. Chem. Chem. Phys., 5, 4157–4169, https://doi.org/10.1039/b308422c, 2003.
Allouche, A. and Bahr, S.: Acetic acid–water interaction in solid interfaces, J. Phys. Chem. B, 110, 8640–8648, https://doi.org/10.1021/jp0559736, 2006.
Alsayed, A., Islam, M., Zhang, J., Collings, P., and Yodh, A.: Premelting at defects within bulk colloidal crystals, Science, 309, 1207–1210, https://doi.org/10.1126/science.1112399, 2005.
Anastasio, C. and Chu, L.: Photochemistry of nitrous acid (HONO) and nitrous acidium ion (\chemH_2ONO^+) in aqueous solution and ice, Environ. Sci. Technol., 43, 1108–1114, https://doi.org/10.1021/es802579a, 2009.
Anastasio, C., Galbavy, E., Hutterli, M., Burkhart, J., and Friel, D.: Photoformation of hydroxyl radical on snow grains at Summit, Greenland, Atmos. Environ., 41, 5110–5121, https://doi.org/10.1016/J.Atmosenv.2006.12.011, 2007.
Anklin, M. and Bales, R. C.: Recent increase in H2O2 concentration at Summit, Greenland, J. Geophys. Res., 102, 19099–19104, https://doi.org/10.1029/97JD01485, 1997.
Aristov, Y. I., Marco, G., Tokarev, M. M., and Parmon, V. N.: Selective water sorbents for multiple applications, 3. CaCl2 solution confined in micro- and mesoporous silica gels: Pore size effect on the `solidification-melting' diagram, React. Kinet. Catal. L., 61, 147–154, https://doi.org/10.1007/BF02477527, 1997.
Arons, E. M. and Colbeck, S. C.: Geometry of heat and mass-transfer in dry snow – a review of theory and experiment, Rev. Geophys., 33, 463–493, https://doi.org/10.1029/95RG0207, 1995.
Baker, I., Cullen, D., and Iliescu, D.: The microstructural location of impurities in ice, Can. J. Phys., 81, 1–9, https://doi.org/10.1139/p03-030, 2003.
Baker, M. and Dash, J. G.: Comment on: Surface layers on ice by CA Knight., J. Geophys. Res., 101, 12929–12936, https://doi.org/10.1029/96JD00555, 1996.
Ballenegger, V., Picaud, S., and Toubin, C.: Molecular dynamics study of diffusion of formaldehyde in ice, Chem. Phys. Lett., 432, 78–83, https://doi.org/10.1016/j.cplett.2006.10.014, 2006.
Barnes, P. and Wolff, E.: Distribution of soluble impurities in cold glacial ice, J. Glaciol., 50, 311–324, https://doi.org/10.3189/172756504781829918, 2004.
Barnes, P., Mulvaney, R., Robinson, K., and Wolff, E.: Observations of polar ice from the holocene and the glacial period using the scanning electron microscope, Ann. Glaciol., 35, 559–566, https://doi.org/10.3189/172756402781816735, 2002.
Barret, M., Domine, F., Houdier, S., Gallet, J.-C., Weibring, P., Walega, J., Fried, A., and Richter, D.: Formaldehyde in the Alaskan Arctic snowpack: Partitioning and physical processes involved in air – snow exchanges, J. Geophys. Res., 116, D00R03, https://doi.org/10.1029/2011JD016038, 2011a.
Barret, M., Houdier, S., and Domine, F.: Thermodynamics of the formaldehyde – water and formaldehyde – ice systems for atmospheric applications, J. Phys. Chem. A, 115, 307–317, https://doi.org/10.1021/jp108907u, 2011b.
Bartels-Rausch, T., Guimbaud, C., Gäggeler, H. W., and Ammann, M.: The partitioning of acetone to different types of ice and snow between 198 and 223 K, Geophys. Res. Lett., 31, L16110, https://doi.org/10.1029/2004gl020070, 2004.
Bartels-Rausch, T., Huthwelker, T., Gäggeler, H. W., and Ammann, M.: Atmospheric pressure coated-wall flow-tube study of acetone adsorption on ice, J. Phys. Chem. A, 109, 4531–4539, https://doi.org/10.1021/Jp0451871, 2005.
Bartels-Rausch, T., Brigante, M., Elshorbany, Y., Ammann, M., D'Anna, B., George, C., Stemmler, K., Ndour, M., and Kleffmann, J.: Humic acid in ice: Photo-enhanced conversion of nitrogen dioxide into nitrous acid, Atmos. Environ., 44, 5443–5450, https://doi.org/10.1016/j.atmosenv.2009.12.025, 2010.
Bartels-Rausch, T., Krysztofiak, G., Bernhard, A., Schläppi, M., Schwikowski, M., and Ammann, M.: Photoinduced reduction of divalent mercury in ice by organic matter, Chemosphere, 82, 199–203, https://doi.org/10.1016/j.chemosphere.2010.10.020, 2011.
Bartels-Rausch, T., Bergeron, V., Cartwright, J. H. E., Escribano, R., Finney, J. L., Grothe, H., Gutierrez, P. J., Haapala, J., Kuhs, W. F., Pettersson, J. B. C., Price, S. D., Sainz-Diaz, C. I., Stokes, D. J., Strazzulla, G., Thomson, E. S., Trinks, H., and Uras-Aytemiz, N.: Ice structures, patterns, and processes: A view across the icefields, Rev. Mod. Phys., 84, 885–944, https://doi.org/10.1103/RevModPhys.84.885, 2012.
Bartels-Rausch, T., Wren, S. N., Schreiber, S., Riche, F., Schneebeli, M., and Ammann, M.: Diffusion of volatile organics through porous snow: Impact of surface adsorption and grain boundaries, Atmos. Chem. Phys., 13, 6727–6739, https://doi.org/10.5194/acp-13-6727-2013, 2013.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning part I: Numerical model, Cold Reg. Sci. Technol., 35, 123–145, 2002.
Bauerecker, S., Ulbig, P., Buch, V., Vrbka, L., and Jungwirth, P.: Monitoring ice nucleation in pure and salty water via high-speed imaging and computer simulations, J. Phys. Chem. C, 112, 7631–7636, https://doi.org/10.1021/jp711507f, 2008.
Beaglehole, D.: Surface melting of small particles, and the effects of surface impurities, J. Cryst. Growth, 112, 663–669, https://doi.org/10.1016/0022-0248(91)90123-M, 1991.
Beine, H. and Anastasio, C.: The photolysis of flash-frozen dilute hydrogen peroxide solutions, J. Geophys. Res., 116, D14302, https://doi.org/10.1029/2010JD015531, 2011.
Beine, H. J., Anastasio, C., Esposito, G., Patten, K., Wilkening, E., Domine, F., Voisin, D., Barret, M., Houdier, S., and Hall, S.: Soluble, light-absorbing species in snow at Barrow, Alaska, J. Geophys. Res., 116, D00R05, https://doi.org/10.1029/2011JD016181, 2011.
Benatov, L. and Wettlaufer, J.: Abrupt grain boundary melting in ice, Phys. Rev. E, 70, 061606, https://doi.org/10.1103/PhysRevE.70.061606, 2004.
Birkeland, K. W., Johnson, R. F., and Schmidt, D. S.: Near-surface faceted crystals formed by diurnal recrystallization: A case study of weak layer formation in the mountain snowpack and its contribution to snow avalanches, Arctic Alpine Res., 30, 200–204, 1998.
Bishop, C. L., Pan, D., Liu, L.-M., Tribello, G. A., Michaelides, A., Wang, E. G., and Slater, B.: On thin ice: Surface order and disorder during pre-melting, Faraday Discuss., 141, 277–292, https://doi.org/10.1039/b807377p, 2009.
Blackford, J. R.: Sintering and microstructure of ice: A review, J. Phys. D Appl. Phys., 40, R355–R385, https://doi.org/10.1088/0022-3727/40/21/R02, 2007.
Blackford, J. R., Jeffree, C. E., Noake, D. F. J., and Marmo, B. A.: Microstructural evolution in sintered ice particles containing \chemNaCl observed by low-temperature scanning electron microscope, P. I. Mech. Eng. L – J. Mat., 221, 151–156, https://doi.org/10.1243/14644207JMDA134, 2007.
Bláha, L., Klánová, J., Klán, P., Janošek, J., Škarek, M., and Růžička, R.: Toxicity increases in ice containing monochlorophenols upon photolysis: Environmental consequences, Environ. Sci. Technol., 38, 2873–2878, https://doi.org/10.1021/es035076k, pMID: 15212262, 2004.
Blicks, H., Dengel, O., and Riehl, N.: Diffusion von Protonen (Tritonen) in reinen und dotierten Eis-Einkristallen, Phys. kondens. Materie, 4, 375–381, https://doi.org/10.1007/BF02422755, 1966.
Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z., and Salmeron, M.: The premelting of ice studied with photoelectron spectroscopy, J. Phys.: Condens. Matter, 14, L227–L233, https://doi.org/10.1088/0953-8984/14/8/108, 2002.
Bock, J. and Jacobi, H.-W.: Development of a mechanism for nitrate photochemistry in snow, J. Phys. Chem. A, 114, 1790–1796, https://doi.org/10.1021/jp909205e, 2010.
Bogdan, A.: Double freezing of \chem(NH_4)_2SO_4/H2O droplets below the eutectic point and the crystallization of \chem(NH_4)_2SO_4 to the ferroelectric phase, J. Phys. Chem. A, 114, 10135–10139, https://doi.org/10.1021/jp105699s, 2010.
Bolton, K. and Pettersson, J. B. C.: A molecular dynamics study of the long-time ice Ih surface dynamics, J. Phys. Chem. B, 104, 1590–1595, https://doi.org/10.1021/jp9934883, 2000.
Boxe, C. S. and Saiz-Lopez, A.: Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL): implications for NOx release from the Arctic and coastal Antarctic snowpack, Atmos. Chem. Phys., 8, 4855–4864, https://doi.org/10.5194/acp-8-4855-2008, 2008.
Bronshteyn, V. and Chernov, A.: Freezing potentials arising on solidification of dilute aqueous solutions of electrolytes, J. Cryst. Growth, 112, 129–145, https://doi.org/10.1016/0022-0248(91)90918-U, 1991.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342, 1989.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical-model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, 1992.
Brun, E., Six, D., Picard, G., Vionnet, V., Arnaud, L., Bazile, E., Boone, A., Bouchard, A., Genthon, C., Guidard, V., Le Moigne, P., Rabier, F., and Seity, Y.: Snow/atmosphere coupled simulation at Dome C, Antarctica, J. Glaciol., 57, 721–736, 2011.
Burkhart, J. F., Hutterli, M. A., and Bales, R. C.: Partitioning of formaldehyde between air and ice at −35 \degree C to −5 \degree C, Atmos. Environ., 36, 2157–2163, https://doi.org/10.1016/S1352-2310(02)00221-2, 2002.
Carignano, M. A., Baskaran, E., Shepson, P. B., and Szleifer, I.: Molecular dynamics simulation of ice growth from supercooled pure water and from salt solution, Ann. Glaciol., 44, 113–117, https://doi.org/10.3189/172756406781811646, 2006.
Carignano, M. A., Shepson, P. B., and Szleifer, I.: Ions at the ice/vapor interface, Chem. Phys. Lett., 436, 99–103, https://doi.org/10.1016/j.cplett.2007.01.016, 2007.
Cheng, J., Hoffmann, M. R., and Colussi, A. J.: Confocal fluorescence microscopy of the morphology and composition of interstitial fluids in freezing electrolyte solutions, J. Phys. Chem. Lett., 1, 374–378, https://doi.org/10.1021/jz9000888, 2010.
Cho, H., Shepson, P. B., Barrie, L. A., Cowin, J. P., and Zaveri, R.: NMR investigation of the quasi-brine layer in ice/brine mixtures, J. Phys. Chem. B, 106, 11226–11232, https://doi.org/10.1021/jp020449+, 2002.
Christenson, H. K.: Confinement effects on freezing and melting, J. Phys.: Condens. Matter, 13, R95–R133, https://doi.org/10.1088/0953-8984/13/11/201, 2001.
Chu, L. and Anastasio, C.: Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice, J. Phys. Chem. A, 107, 9594–9602, https://doi.org/10.1021/jp0349132, 2003.
Chu, L. and Anastasio, C.: Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide, J. Phys. Chem. A, 109, 6264–6271, https://doi.org/10.1021/jp051415f, 2005.
Chu, L. and Anastasio, C.: Temperature and wavelength dependence of nitrite photolysis in frozen and aqueous solutions, Environ. Sci. Technol., 41, 3626–3632, https://doi.org/10.1021/es062731q, 2007.
Clapsaddle, C. and Lamb, D.: The sorption behavior of SO2 on ice at temperatures between −30 \degree C and −5 \degree C, Geophys. Res. Lett., 16, 1173–1176, https://doi.org/10.1029/GL016i010p01173, 1989.
Clarke, D. R.: On the equilibrium thickness of intergranular glass phases in ceramic materials, J. Am. Ceram. Soc., 70, 15–22, https://doi.org/10.1111/j.1151-2916.1987.tb04846.x, 1987.
Clegg, S. M. and Abbatt, J. P. D.: Uptake of gas-phase SO2 and H2O2 by ice surfaces: dependence on partial pressure, temperature, and surface acidity, J. Phys. Chem. A, 105, 6630–6636, https://doi.org/10.1021/jp010062r, 2001.
Cobb, A. and Gross, G.: Interfacial electrical effects observed during the freezing of dilute electrolytes in water, J. Electrochem. Soc., 116, 796–804, 1969.
Cohen, S. R., Weissbuch, I., PopovitzBiro, R., Majewski, J., Mauder, H. P., Lavi, R., Leiserowitz, L., and Lahav, M.: Spontaneous assembly in organic thin films spread on aqueous subphase: A scanning force microscope (SFM) study, Isr. J. Chem., 36, 97–110, 1996.
Compoint, M., Toubin, C., Picaud, S., Hoang, P. N. M., and Girardet, C.: Geometry and dynamics of formic and acetic acids adsorbed on ice, Chem. Phys. Lett., 365, 1–7, https://doi.org/10.1016/S0009-2614(02)01413-6, 2002.
Conde, M. M., Vega, C., and Patrykiejew, A.: The thickness of a liquid layer on the free surface of ice as obtained from computer simulation, J. Chem. Phys., 129, 014702, https://doi.org/10.1063/1.2940195, 2008.
Conklin, M. H. and Bales, R. C.: SO2 uptake on ice spheres – liquid nature of the ice-air interface, J. Geophys. Res., 98, 16851–16855, https://doi.org/10.1029/93JD0120, 1993.
Conklin, M. H., Sigg, A., Neftel, A., and Bales, R. C.: Atmosphere-snow transfer-function for H2O2 – microphysical considerations, J. Geophys. Res., 98, 18367–18376, https://doi.org/10.1029/93JD01194, 1993.
Cox, R., Fernandez, M., Symington, A., Ullerstam, M., and Abbatt, J. P. D.: A kinetic model for uptake of HNO3 and \chemHCl on ice in a coated wall flow system, Phys. Chem. Chem. Phys., 7, 3434–3442, https://doi.org/10.1039/b506683b, 2005.
Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – Heterogeneous reactions on solid substrates, Atmos. Chem. Phys., 10, 9059–9223, https://doi.org/10.5194/acp-10-9059-2010, 2010.
Cullen, D. and Baker, I.: Observation of impurities in ice, Microsc. Res. Tech., 55, 198–207, https://doi.org/10.1002/jemt.10000, 2001.
Dadic, R., Schneebeli, M., Lehning, M., Hutterli, M. A., and Ohmura, A.: Impact of the microstructure of snow on its temperature: A model validation with measurements from Summit, Greenland, J. Geophys. Res., 113, D14303, https://doi.org/10.1029/2007JD009562, 2008.
Dash, J. G., Fu, H. Y., and Wettlaufer, J. S.: The premelting of ice and its environmental consequences, Rep. Prog. Phys., 58, 115–167, https://doi.org/10.1088/0034-4885/58/1/003, 1995.
Dash, J. G., Rempel, A. W., and Wettlaufer, J.: The physics of premelted ice and its geophysical consequences, Rev. Mod. Phys., 78, 695–741, https://doi.org/10.1103/RevModPhys.78.695, 2006.
Davis, D., Nowak, J. B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele, F., Mauldin, L., Tanner, D., Shetter, R., Lefer, B., and McMurry, P.: Unexpected high levels of NO observed at South Pole, Geophys. Res. Lett., 28, 3625–3628, https://doi.org/10.1029/2000GL012584, 2001.
Davis, D., Chen, G., Buhr, M., Crawford, J., Lenschow, D., Lefer, B., Shetter, R., Eisele, F., Mauldin, L., and Hogan, A.: South Pole NOx chemistry: An assessment of factors controlling variability and absolute levels, Atmos. Environ., 38, 5375–5388, https://doi.org/10.1016/J.Atmosenv.2004.04.039, 2004.
De Angelis, M. and Legrand, M.: Origins and variations of fluoride in Greenland precipitation, J. Geophys. Res., 99, 1157–1172, https://doi.org/10.1029/93JD02660, 1994.
Delibaltas, P., Dengel, O., Helmreich, D., Riehl, N., and Simon, H.: Diffusion von 18O in Eis-Einkristallen, Phys. kondens. Materie, 5, 166, https://doi.org/10.1007/BF02422709, 1966.
Devlin, J. P. and Buch, V.: Evidence for the surface origin of point defects in ice: Control of interior proton activity by adsorbates, J. Chem. Phys., 127, 091101, https://doi.org/10.1063/1.2768517, 2007.
Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Göttlicher, J., Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, D. N.: Calcium carbonate as ikaite crystals in Antarctic sea ice, Geophys. Res. Lett., 35, L08501, https://doi.org/10.1029/2008gl033540, 2008.
Dolinová, J., Ružička, R., Kurková, R., Klánová, J., and Klán, P.: Oxidation of aromatic and aliphatic hydrocarbons by OH radicals photochemically generated from H2O2 in ice, Environ. Sci. Technol., 40, 7668–7674, https://doi.org/10.1021/es0605974, 2006.
Domine, F. and Rauzy, C.: Influence of the ice growth rate on the incorporation of gaseous HCl, Atmos. Chem. Phys., 4, 2513–2519, https://doi.org/10.5194/acp-4-2513-2004, 2004.
Domine, F. and Shepson, P. B.: Air-snow interactions and atmospheric chemistry, Science, 297, 1506–1510, https://doi.org/10.1126/science.1074610, 2002.
Domine, F. and Thibert, E.: Mechanism of incorporation of trace gases in ice grown from the gas phase, Geophys. Res. Lett., 23, 3627–3630, 1996.
Domine, F., Thibert, E., Vanlandeghem, F., Silvente, E., and Wagnon, P.: Diffusion and solubility of \chemHCl in ice – preliminary-results, Geophys. Res. Lett., 21, 601–604, 1994.
Domine, F., Cabanes, A., Taillandier, A. S., and Legagneux, L.: Specific surface area of snow samples determined by CH4 adsorption at 77 K and estimated by optical, microscopy and scanning electron microscopy, Environ. Sci. Technol., 35, 771–780, https://doi.org/10.1021/es001168n, 2001.
Domine, F., Sparapani, R., Ianniello, A., and Beine, H. J.: The origin of sea salt in snow on Arctic sea ice and in coastal regions, Atmos. Chem. Phys., 4, 2259–2271, https://doi.org/10.5194/acp-4-2259-2004, 2004.
Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W., Kokhanovsky, A. A., Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171–208, https://doi.org/10.5194/acp-8-171-2008, 2008.
Domine, F., Bock, J., Voisin, D., and Donaldson, D. J.: Can we model snow photochemistry? Problems with the current approaches., J. Phys. Chem. A, 117, 4733–4749, https://doi.org/10.1021/jp3123314, 2013.
Dommergue, A. l., Ferrari, C. P., Gauchard, P.-A., Boutron, C. F., Poissant, L., Pilote, M., Jitaru, P., and Adams, F.: The fate of mercury species in a sub-Arctic snowpack during snowmelt, Geophys. Res. Lett., 30, 1621–1624, https://doi.org/10.1029/2003gl017308, 2003.
Döppenschmidt, A. and Butt, H. J.: Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy, Langmuir, 16, 6709–6714, https://doi.org/10.1021/la990799w, 2000.
Douglas, T. A., Sturm, M., Simpson, W. R., Blum, J. D., Alvarez-Aviles, L., Keeler, G. J., Perovich, D. K., Biswas, A., and Johnson, K.: Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic, Environ. Sci. Technol., 42, 1542–1551, https://doi.org/10.1021/es070502d, 2011.
Dubowski, Y. and Hoffmann, M.: Photochemical transformations in ice: Implications for the fate of chemical species, Geophys. Res. Lett., 27, 3321–3324, https://doi.org/10.1029/2000GL011701, 2000.
Dubowski, Y., Colussi, A. J., and Hoffmann, M. R.: Nitrogen dioxide release in the 302 nm band photolysis of spray-frozen aqueous nitrate solutions. Atmospheric implications, J. Phys. Chem. A, 105, 4928–4932, https://doi.org/10.1021/jp0042009, 2001.
Dubowski, Y., Colussi, A. J., Boxe, C., and Hoffmann, M. R.: Monotonic increase of nitrite yields in the photolysis of nitrate in ice and water between 238 and 294 K, J. Phys. Chem. A, 106, 6967–6971, https://doi.org/10.1021/jp0142942, 2002.
Durnford, D. and Dastoor, A.: The behavior of mercury in the cryosphere: A review of what we know from observations, J. Geophys. Res., 116, D06305, https://doi.org/10.1029/2010JD014809, 2011.
Eichler, A., Schwikowski, M., and Gäggeler, H. W.: Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192–203, https://doi.org/10.1034/j.1600-0889.2001.d01-15.x, 2001.
Eisele, F., Davis, D. D., Helmig, D., Oltmans, S. J., Neff, W., Huey, G., Tanner, D., Chen, G., Crawford, J., Arimoto, R., Buhr, M., Mauldin, L., Hutterli, M., Dibb, J., Blake, D., Brooks, S. B., Johnson, B., Roberts, J. M., Wang, Y. H., Tan, D., and Flocke, F.: Antarctic tropospheric chemistry investigation (ANTCI) 2003 overview, Atmos. Environ., 42, 2749–2761, https://doi.org/10.1016/J.Atmosenv.2007.04.013, 2008.
Elbaum, M., Lipson, S., and Dash, J. G.: Optical study of surface melting on ice, J. Cryst. Growth, 129, 491–505, https://doi.org/10.1016/0022-0248(93)90483-D, 1993.
Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E., Boone, A., Dai, Y., Essery, R., Fernandez, A., Gusev, Y., Jordan, R., Koren, V., Kowalcyzk, E., Nasonova, N. O., Pyles, R. D., Schlosser, A., Shmakin, A. B., Smirnova, T. G., Strasser, U., Verseghy, D., Yamazaki, T., and Yang, Z. L.: Validation of the energy budget of an alpine snowpack simulated by several snow models (SNOWMIP project), Ann. Glaciol., 38, 150–158, https://doi.org/10.3189/172756404781814825, 2004.
Finnegan, W.: Redox reactions in growing single ice crystals: A mechanistic interpretation of experimental results, J. Colloid Interface Sci., 242, 373–377, https://doi.org/10.1006/jcis.2001.7825, 2001.
Finnegan, W. and Pitter, R.: Ion-induced charge separations in growing single ice crystals: Effects on growth and interaction processes, J. Colloid Interface Sci., 189, 322–327, https://doi.org/10.1006/jcis.1997.4829, 1997.
Freitag, J., Wilhelms, F., and Kipfstuhl, S.: Microstructure-dependent densification of polar firn derived from X-ray microtomography, J. Glaciol., 50, 243–250, https://doi.org/10.3189/172756504781830123, 2004.
Frenkel, J.: Kinetic theory of liquids, Clarendon, Oxford, 1946.
Frenken, J. W. and van der Veen, J. F.: Observation of surface melting, Phys. Rev. Lett., 54, 134–137, https://doi.org/10.1103/PhysRevLett.54.134, 1985.
Frey, M. M., Stewart, R. W., McConnell, J. R., and Bales, R. C.: Atmospheric hydroperoxides in west Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity, J. Geophys. Res., 110, D23301, https://doi.org/10.1029/2005JD006110, 2005.
Frey, M. M., Bales, R. C., and McConnell, J. R.: Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica, J. Geophys. Res., 111, D21301, https://doi.org/10.1029/2005JD006816, 2006.
Frey, M. M., Brough, N., France, J. L., Anderson, P. S., Traulle, O., King, M. D., Jones, A. E., Wolff, E. W., and Savarino, J.: The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions, Atmos. Chem. Phys., 13, 3045–3062, https://doi.org/10.5194/acp-13-3045-2013, 2013.
Fries, E., Starokozhev, E., Haunold, W., Jaeschke, W., Mitra, S. K., Borrmann, S., and Schmidt, M. U.: Laboratory studies on the uptake of aromatic hydrocarbons by ice crystals during vapor depositional crystal growth, Atmos. Environ., 41, 6156–6166, https://doi.org/10.1016/j.atmosenv.2007.04.028, 2007.
Fuhrer, K., Neftel, A., Anklin, M., and Maggi, V.: Continuous measurements of hydrogen-peroxide, formaldehyde, calcium and ammonium concentrations along the new grip ice core from Summit, central Greenland, Atmos. Environ., 27, 1873–1880, https://doi.org/10.1016/0960-1686(93)90292-7, 1993.
Fukazawa, H., Sugiyama, K., Mae, S., Narita, H., and Hondoh, T.: Acid ions at triple junction of Antarctic ice observed by raman scattering, Geophys. Res. Lett., 25, 2845–2848, https://doi.org/10.1029/98GL02178, 1998.
Furukawa, Y. and Nada, H.: Anisotropic surface melting of an ice crystal and its relationship to growth forms, J. Phys. Chem. B, 101, 6167–6170, https://doi.org/10.1021/jp9631700, 1997.
Furukawa, Y., Yamamoto, M., and Kuroda, T.: Ellipsometric study of the transition layer on the surface of an ice crystal, J. Cryst. Growth, 82, 665–677, https://doi.org/10.1016/s0022-0248(87)80012-x, 1987.
Galbavy, E. S., Ram, K., and Anastasio, C.: 2-nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry, J. Photoch. Photobio. A, 209, 186–192, https://doi.org/10.1016/j.jphotochem.2009.11.013, 2010.
Gao, S. S. and Abbatt, J. P. D.: Kinetics and mechanism of OH oxidation of small organic dicarboxylic acids in ice: Comparison to behavior in aqueous solution, J. Phys. Chem. A, 115, 9977–9986, https://doi.org/10.1021/jp202478w, 2011.
Geil, B., Kirschgen, T., and Fujara, F.: Mechanism of proton transport in hexagonal ice, Phys. Rev. B, 72, 014304, https://doi.org/10.1103/PhysRevB.72.014304, 2005.
Genthon, C., Fily, M., and Martin, E.: Numerical simulations of Greenland snowpack and comparison with passive microwave spectral signatures, Ann. Glaciol., 32, 109–115, https://doi.org/10.3189/172756401781819094, 2001.
George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals, Nature Chem., 2, 713–722, https://doi.org/10.1038/nchem.806, 2010.
Giannelli, V., Thomas, D. N., Haas, C., Kattner, G., Kennedy, H., and Dieckmann, G. S.: Behaviour of dissolved organic matter and inorganic nutrients during experimental sea-ice formation, Ann. Glaciol., 33, 317–321, 2001.
Gillen, K. T., Douglass, D. C., and Hoch, M. J. R.: Self-diffusion in liquid water to −31 \degree C, J. Chem. Phys., 57, 5117, https://doi.org/10.1063/1.1678198, 1972.
Girardet, C. and Toubin, C.: Molecular atmospheric pollutant adsorption on ice: A theoretical survey, Surf. Sci. Rep., 44, 163–238, https://doi.org/10.1016/S0167-5729(01)00016-4, 2001.
Gladich, I., Pfalzgraff, W., Mar\v sálek, O., Jungwirth, P., Roeselová, M., and Neshyba, S.: Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice, Phys. Chem. Chem. Phys., 13, 19960–19969, https://doi.org/10.1039/c1cp22238d, 2011.
Goertz, M. P., Zhu, X. Y., and Houston, J. E.: Exploring the liquid-like layer on the ice surface, Langmuir, 25, 6905–6908, https://doi.org/10.1021/la9001994, 2009.
Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J., and Zhu, J.: Thermal evolution of permeability and microstructure in sea ice, Geophys. Res. Lett., 34, L16501, https://doi.org/10.1029/2007GL030447, 2007.
Golecki, I. and Jaccard, C.: Intrinsic surface disorder in ice near the melting point, J. Phys. C Solid State, 11, 4229–4237, https://doi.org/10.1088/0022-3719/11/20/018, 1978.
Goto, K., Hondoh, T., and Higashi, A.: Determination of diffusion-coefficients of self-interstitials in ice with a new method of observing climb of dislocations by X-Ray topography, Jpn. J. Appl. Phys. 1, 25, 351–357, https://doi.org/10.1143/JJAP.25.351, 1986.
Grannas, A. M., Bausch, A. R., and Mahanna, K. M.: Enhanced aqueous photochemical reaction rates after freezing, J. Phys. Chem. A, 111, 11043–11049, https://doi.org/10.1021/jp073802q, 2007a.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: Evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007b.
Grannas, A. M., Bogdal, C., Hageman, K. J., Halsall, C., Harner, T., Hung, H., Kallenborn, R., Klán, P., Klánová, J., Macdonald, R. W., Meyer, T., and Wania, F.: The role of the global cryosphere in the fate of organic contaminants, Atmos. Chem. Phys., 13, 3271–3305, https://doi.org/10.5194/acp-13-3271-2013, 2013.
Grecea, M. L., Backus, E. H. G., Fraser, H. J., Pradeep, T., Kleyn, A. W., and Bonn, M.: Mobility of haloforms on ice surfaces, Chem. Phys. Lett., 385, 244–248, https://doi.org/10.1016/j.cplett.2003.12.085, 2004.
Gross, G. W., Gutjahr, A., and Caylor, K.: Recent experimental work on solute redistribution at the ice water interface –- Implications for electrical-properties and interface processes, J. Phys.-Paris, 48, 527–533, https://doi.org/10.1051/jphyscol:1987172, 1987.
Guzmán, M. I., Hildebrandt, L., Colussi, A. J., and Hoffmann, M. R.: Cooperative hydration of pyruvic acid in ice, J. Am. Chem. Soc., 128, 10621–10624, https://doi.org/10.1021/ja062039v, 2006.
Guzmán, M. I., Hoffmann, M. R., and Colussi, A. J.: Photolysis of pyruvic acid in ice: Possible relevance to CO and CO2 ice core record anomalies, J. Geophys. Res., 112, D10123, https://doi.org/10.1029/2006JD007886, 2007.
Halde, R.: Concentration of impurities by progressive freezing, Water Res., 14, 575–580, https://doi.org/10.1016/0043-1354(80)90115-3, 1980.
Harrison, J. D.: Measurements of brine droplet migration in ice, J. Appl. Phys., 36, 3811–3815, https://doi.org/10.1063/1.1713953, 1965.
Heger, D. and Klán, P.: Interactions of organic molecules at grain boundaries in ice: A solvatochromic analysis, J. Photoch. Photobio. A, 187, 275–284, https://doi.org/10.1016/j.jphotochem.2006.10.012, 2007.
Heger, D., Jirkovsky, J., and Klán, P.: Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy, J. Phys. Chem. A, 109, 6702–6709, https://doi.org/10.1021/jp050439j, 2005.
Heger, D., Klánová, J., and Klán, P.: Enhanced protonation of cresol red in acidic aqueous solutions caused by freezing, J. Phys. Chem. B, 110, 1277–1287, https://doi.org/10.1021/jp0553683, 2006.
Heggli, M., Köchle, B., Matzl, M., Pinzer, B. R., Riche, F., Steiner, S., Steinfeld, D., and Schneebeli, M.: Measuring snow in 3-D using X-ray tomography: Assessment of visualization techniques, Ann. Glaciol., 52, 231–236, https://doi.org/10.3189/172756411797252202, 2011.
Hellebust, S., Roddis, T., and Sodeau, J. R.: Potential role of the nitroacidium ion on HONO emissions from the snowpack, J. Phys. Chem. A, 111, 1167–1171, https://doi.org/10.1021/jp068264g, 2007.
Hellebust, S., O'Sullivan, D., and Sodeau, J. R.: Protonated nitrosamide and its potential role in the release of HONO from snow and ice in the dark, J. Phys. Chem. A, 114, 11632–11637, https://doi.org/10.1021/jp104327a, 2010.
Henson, B. and Robinson, J.: Dependence of quasiliquid thickness on the liquid activity: A bulk thermodynamic theory of the interface, Phys. Rev. Lett., 92, 246107, https://doi.org/10.1103/PhysRevLett.92.246107, 2004.
Henson, B. F., Voss, L. F., Wilson, K. R., and Robinson, J. M.: Thermodynamic model of quasiliquid formation on H2O ice: Comparison with experiment, J. Chem. Phys., 123, 144707, https://doi.org/10.1063/1.2056541, 2005.
Herbert, B. M. J., Halsall, C. J., Jones, K. C., and Kallenborn, R.: Field investigation into the diffusion of semi-volatile organic compounds into fresh and aged snow, Atmos. Environ., 40, 1385–1393, https://doi.org/10.1016/j.atmosenv.2005.10.055, 2006.
Hirashima, H., Yamaguchi, S., Sato, A., and Lehning, M.: Numerical modeling of liquid water movement through layered snow based on new measurements of the water retention curve, Cold Reg. Sci. Technol., 64, 94–103, https://doi.org/10.1016/j.coldregions.2010.09.003, 2010.
Hobbs, P. V.: Ice physics, Oxford classic texts in the physical sciences, Oxford University Press, 2010.
Hoekstra, P. and Osterkamp, T. E.: The migration of liquid inclusions in single ice crystals, J. Geophys. Res., 70, 5035, https://doi.org/10.1029/JZ070i020p05035, 1965.
Honrath, R. E., Guo, S., Peterson, M. C., Dziobak, M. P., Dibb, J. E., and Arsenault, M. A.: Photochemical production of gas phase NOx from ice crystal \chemNO_3^-, J. Geophys. Res., 105, 24183–24190, https://doi.org/10.1029/2000JD900361, 2000.
Huthwelker, T., Lamb, D., Baker, M., Swanson, B., and Peter, T.: Uptake of SO2 by polycrystalline water ice, J. Colloid Interface Sci., 238, 147–159, https://doi.org/10.1006/jcis.2001.7507, 2001.
Huthwelker, T., Krieger, U. K., Weers, U., Peter, T., and Lanford, W. A.: RBS analysis of trace gas uptake on ice, Nucl. Instrum. Meth. B, 190, 47–53, https://doi.org/10.1016/S0168-583X(01)01265-4, 2002.
Huthwelker, T., Malmström, M. E., Helleis, F., Moortgat, G. K., and Peter, T.: Kinetics of HCl uptake on ice at 190 and 203 \chemK: Implications for the microphysics of the uptake process, J. Phys. Chem. A, 108, 6302–6318, https://doi.org/10.1021/jp0309623, 2004.
Huthwelker, T., Ammann, M., and Peter, T.: The uptake of acidic gases on ice, Chem. Rev., 106, 1375–1444, https://doi.org/10.1021/Cr020506v, 2006.
Hutterli, M. A., Röthlisberger, R., and Bales, R. C.: Atmosphere–to–snow–to–firn transfer studies of \chemHCHO at Summit, Greenland, Geophys. Res. Lett., 26, 1691–1694, https://doi.org/10.1029/1999GL900327, 1999.
Hutterli, M. A., McConnell, J. R., Bales, R. C., and Stewart, R. W.: Sensitivity of hydrogen peroxide (H2O2) and formaldehyde (\chemHCHO) preservation in snow to changing environmental conditions: Implications for ice core records, J. Geophys. Res., 108, 4023, https://doi.org/10.1029/2002JD002528, 2003.
Hynes, R. G., Fernandez, M. A., and Cox, R. A.: Uptake of HNO3 on water-ice and coadsorption of HNO3 and \chemHCl in the temperature range 210–235 K, J. Geophys. Res., 107, 4797, https://doi.org/10.1029/2001JD001557, 2002.
Ikeda-Fukazawa, T. and Kawamura, K.: Molecular-dynamics studies of surface of ice Ih, J. Chem. Phys., 120, 1395–1401, https://doi.org/10.1063/1.1634250, 2004.
Israelachvili, J. N.: Intermolecular and surface forces, Academic Press, Oxford, https://doi.org/10.1016/B978-0-12-375182-9.10026-0, 1991.
Jacobi, H. W.: Correction to `Development of a mechanism for nitrate photochemistry in snow', J. Phys. Chem. A, 115, 14717–14719, https://doi.org/10.1021/Jp209750d, 2011.
Jacobi, H.-W. and Hilker, B.: A mechanism for the photochemical transformation of nitrate in snow, J. Photoch. Photobio. A, 185, 371–382, https://doi.org/10.1016/j.jphotochem.2006.06.039, 2007.
Jacobi, H. W., Frey, M. M., Hutterli, M. A., Bales, R. C., Schrems, O., Cullen, N. J., Steffen, K., and Koehler, C.: Measurements of hydrogen peroxide and formaldehyde exchange between the atmosphere and surface snow at Summit, Greenland, Atmos. Environ., 36, 2619–2628, https://doi.org/10.1016/S1352-2310(02)00106-1, 2002.
Jacobi, H. W., Annor, T., and Quansah, E.: Investigation of the photochemical decomposition of nitrate, hydrogen peroxide, and formaldehyde in artificial snow, J. Photoch. Photobio. A, 179, 330–338, https://doi.org/10.1016/j.jphotochem.2005.09.001, 2006.
Jacobi, H. W., Domine, F., Simpson, W. R., Douglas, T. A., and Sturm, M.: Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: Implementation and evaluation for subarctic snow in Alaska, Cryosphere, 4, 35–51, https://doi.org/10.5194/tc-4-35-2010, 2010.
Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemitshaw, K. C., Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Sturges, W. T., and Worton, D. R.: The multi-seasonal NOy budget in coastal Antarctica and its link with surface snow and ice core nitrate: Results from the CHABLIS campaign, Atmos. Chem. Phys., 11, 9271–9285, https://doi.org/10.5194/acp-11-9271-2011, 2011.
Journet, E., Le Calvé, S. p., and Mirabel, P.: Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K, J. Phys. Chem. B, 109, 14112–14117, https://doi.org/10.1021/jp051524u, 2005.
Jung, K. H., Park, S. C., Kim, J. H., and Kang, H.: Vertical diffusion of water molecules near the surface of ice, J. Chem. Phys., 121, 2758–2764, https://doi.org/10.1063/1.1770518, 2004.
Kahan, T. F. and Donaldson, D. J.: Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces, J. Phys. Chem. A, 111, 1277–1285, https://doi.org/10.1021/jp066660t, 2007.
Kahan, T. F. and Donaldson, D. J.: Heterogeneous ozonation kinetics of phenanthrene at the air–ice interface, Environ. Res. Lett., 3, 045006, https://doi.org/10.1088/1748-9326/3/4/045006, 2008.
Kahan, T. F. and Donaldson, D. J.: Benzene photolysis on ice: Implications for the fate of organic contaminants in the winter, Environ. Sci. Technol., 44, 3819–3824, https://doi.org/10.1021/es100448h, 2010.
Kahan, T. F., Reid, J. P., and Donaldson, D. J.: Spectroscopic probes of the quasi-liquid layer on ice, J. Phys. Chem. A, 111, 11006–11012, https://doi.org/10.1021/jp074551o, 2007.
Kahan, T. F., Kwamena, N.-O. A., and Donaldson, D. J.: Different photolysis kinetics at the surface of frozen freshwater vs. frozen salt solutions, Atmos. Chem. Phys., 10, 10917–10922, https://doi.org/10.5194/acp-10-10917-2010, 2010a.
Kahan, T. F., Zhao, R., and Donaldson, D. J.: Hydroxyl radical reactivity at the air–ice interface, Atmos. Chem. Phys., 10, 843–854, https://doi.org/10.5194/acp-10-843-2010, 2010b.
Kahan, T. F., Zhao, R., Jumaa, K. B., and Donaldson, D. J.: Anthracene photolysis in aqueous solution and ice: Photon flux dependence and comparison of kinetics in bulk ice and at the air–ice interface, Environ. Sci. Technol., 44, 1302–1306, https://doi.org/10.1021/es9031612, 2010c.
Karcher, B. and Basko, M. M.: Trapping of trace gases in growing ice crystals, J. Geophys. Res., 109, D22204, https://doi.org/10.1029/2004JD005254, 2004.
Kawada, S.: Dielectric anisotropy in ice Ih, J. Phys. Soc. Jpn., 44, 1881–1886, https://doi.org/10.1143/JPSJ.44.1881, 1978.
Kerbrat, M., Le Calvé, S., and Mirabel, P.: Uptake measurements of ethanol on ice surfaces and on supercooled aqueous solutions doped with nitric acid between 213 and 243 K, J. Phys. Chem. A, 111, 925–931, https://doi.org/10.1021/jp0635011, 2007.
Kerbrat, M., Huthwelker, T., Bartels-Rausch, T., Gäggeler, H. W., and Ammann, M.: Co-adsorption of acetic acid and nitrous acid on ice, Phys. Chem. Chem. Phys., 12, 7194–7202, https://doi.org/10.1039/b924782c, 2010a.
Kerbrat, M., Huthwelker, T., Gäggeler, H. W., and Ammann, M.: Interaction of nitrous acid with polycrystalline ice: Adsorption on the surface and diffusion into the bulk, J. Phys. Chem. C, 114, 2208–2219, https://doi.org/10.1021/jp909535c, 2010b.
Kim, K. and Choi, W.: Enhanced redox conversion of chromate and arsenite in ice, Environ. Sci. Technol., 45, 2202–2208, https://doi.org/10.1021/es103513u, 2011.
Kim, K., Choi, W., Hoffmann, M. R., Yoon, H.-I., and Park, B.-K.: Photoreductive dissolution of iron oxides trapped in ice and its environmental implications, Environ. Sci. Technol., 44, 4142–4148, https://doi.org/10.1021/es9037808, 2010.
Klán, P. and Holoubek, I.: Ice (photo)chemistry. Ice as a medium for long-term (photo)chemical transformations – Environmental implications, Chemosphere, 46, 1201–1210, https://doi.org/10.1016/S0045-6535(01)00285-5, 2002.
Klán, P., Ansorgová, A., del Favero, D., and Holoubek, I.: Photochemistry of chlorobenzene in ice, Tetrahedron Lett., 41, 7785–7789, https://doi.org/10.1016/S0040-4039(00)01336-8, 2000.
Klán, P., del Favero, D., Ansorgová, A., Klánová, J., and Holoubek, I.: Photodegradation of halobenzenes in water ice, Environ. Sci. Pollut. Res., 8, 195–200, https://doi.org/10.1007/BF02987385, 2001.
Klánová, J., Klán, P., Heger, D., and Holoubek, I.: Comparison of the effects of UV, H2O2/UV and gamma-irradiation processes on frozen and liquid water solutions of monochlorophenols, Photochem. Photobiol. Sci., 2, 1023–1031, https://doi.org/10.1039/b303483f, 2003a.
Klánová, J., Klán, P., Nosek, J., and Holoubek, I.: Environmental ice photochemistry: Monochlorophenols, Environ. Sci. Technol., 37, 1568–1574, https://doi.org/10.1021/es025875n, 2003b.
Knight, C. A.: Reply, J. Geophys. Res., 101, 12933–12936, https://doi.org/10.1029/96JD00556, 1996a.
Knight, C. A.: Surface layers on ice, J. Geophys. Res., 101, 12921–12928, https://doi.org/10.1029/96JD00554, 1996b.
Koch, T. G., Holmes, N. S., Roddis, T. B., and Sodeau, J. R.: Low-temperature reflection/absorption IR study of thin films of nitric acid hydrates and ammonium nitrate adsorbed on gold foil, J. Chem. Soc. Farad. T. I, 92, 4787–4792, https://doi.org/10.1039/ft9969204787, 1996.
Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J., Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. T., Hanson, D. R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M. J., Rudich, Y., Wagner, P. E., Winkler, P. M., Worsnop, D. R., and O' Dowd, C. D.: An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds, Atmos. Chem. Phys., 10, 10561–10605, https://doi.org/10.5194/acp-10-10561-2010, 2010.
Koop, T., Kapilashrami, A., Molina, L. T., and Molina, M. J.: Phase transitions of sea-salt/water mixtures at low temperatures: Implications for ozone chemistry in the polar marine boundary layer, J. Geophys. Res., 105, 26393–26402, https://doi.org/10.1029/2000JD900413, 2000.
Kopp, M., Barnaal, D. E., and Lowe, I. J.: Measurement by NMR of diffusion rate of \chemHF in ice, J. Chem. Phys., 43, 2965–2971, https://doi.org/10.1063/1.1697258, 1965.
Krieger, U. K., Huthwelker, T., Daniel, C., Weers, U., Peter, T., and Lanford, W. A.: Rutherford backscattering to study the near-surface region of volatile liquids and solids, Science, 295, 1048–1050, https://doi.org/10.1126/science.1066654, 2002.
Kuo, M. H., Moussa, S. G., and McNeill, V. F.: Modeling interfacial liquid layers on environmental ices, Atmos. Chem. Phys., 11, 9971–9982, https://doi.org/10.5194/acp-11-9971-2011, 2011.
Kurková, R., Ray, D., Nachtigallová, D., and Klán, P.: Chemistry of small organic molecules on snow grains: The applicability of artificial snow for environmental studies, Environ. Sci. Technol., 45, 3430–3436, https://doi.org/10.1021/es104095g, 2011.
Křepelová, A., Huthwelker, T., Bluhm, H., and Ammann, M.: Surface chemical properties of eutectic and frozen \chemNaCl solutions probed by XPS and NEXAFS, Chem. Phys. Chem., 11, 3859–3866, https://doi.org/10.1002/cphc.201000461, 2010a.
Křepelová, A., Newberg, J. T., Huthwelker, T., Bluhm, H., and Ammann, M.: The nature of nitrate at the ice surface studied by XPS and NEXAFS, Phys. Chem. Chem. Phys., 12, 8870–8880, https://doi.org/10.1039/c0cp00359j, 2010b.
Křepelová, A., Bartels-Rausch, T., Brown, M. A., Bluhm, H., and Ammann, M.: Adsorption of acetic acid on ice studied by ambient-pressure XPS and partial-electron-yield NEXAFS spectroscopy at 230–240 K, J. Phys. Chem. A, 117, 401–409, https://doi.org/10.1021/jp3102332, 2013.
Lalonde, J. D., Poulain, A. J., and Amyot, M.: The role of mercury redox reactions in snow on snow–to–air mercury transfer, Environ. Sci. Technol., 36, 174–178, https://doi.org/10.1021/es010786g, 2002.
Lamarque, J.-F., McConnell, J. R., Shindell, D. T., Orlando, J. J., and Tyndall, G. S.: Understanding the drivers for the 20th century change of hydrogen peroxide in Antarctic ice-cores, Geophys. Res. Lett., 38, L04810, https://doi.org/10.1029/2010GL045992, 2011.
Lee, C. W., Lee, P. R., Kim, Y. K., and Kang, H.: Mechanistic study of proton transfer and H}/{D exchange in ice films at low temperatures (100–140 K), J. Chem. Phys., 127, 084701, https://doi.org/10.1063/1.2759917, 2007.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: A review, Rev. Geophys., 35, 219–243, https://doi.org/10.1029/96RG03527, 1997.
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical snowtack model for the Swiss avalanche warning part II: Snow microstructure, Cold Reg. Sci. Technol., 35, 147–167, 2002.
Lejeune, Y., WAGNON, P., Bouilloud, L., Chevallier, P., Etchevers, P., Martin, E., Sicart, J. E., and Habets, F.: Melting of snow cover in a tropical mountain environment in Bolivia: Processes and modeling, J. Hydrometeo., 8, 922–937, https://doi.org/10.1175/Jhm590.1, 2007.
Li, Y. and Somorjai, G. A.: Surface premelting of ice, J. Phys. Chem. C, 111, 9631–9637, https://doi.org/10.1021/jp071102f, 2007.
Li, Z., Friedl, R., Moore, S., and Sander, S.: Interaction of peroxynitric acid with solid H2O ice, J. Geophys. Res., 101, 6795–6802, https://doi.org/10.1029/96JD00065, 1996.
Liao, W. and Tan, D.: 1-D Air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003, Atmos. Chem. Phys., 8, 7087–7099, https://doi.org/10.5194/acp-8-7087-2008, 2008.
Lied, A., Dosch, H., and Bilgram, J. H.: Glancing angle X-ray scattering from single crystal ice surfaces, Physica B, 198, 92–96, https://doi.org/10.1016/0921-4526(94)90135-X, 1994.
Livingston, F. and George, S.: Effect of sodium on \chemHCl hydrate diffusion in ice: Evidence for anion-cation trapping, J. Phys. Chem. A, 106, 5114–5119, https://doi.org/10.1021/jp0145309, 2002.
Livingston, F., Smith, J., and George, S.: Depth-profiling and diffusion measurements in ice films using infrared laser resonant desorption, Anal. Chem., 72, 5590–5599, https://doi.org/10.1021/ac000724t, 2000.
Liyana-Arachchi, T., Valsaraj, K., and Hung, F.: Ice growth from supercooled aqueous solutions of reactive oxygen species, Theor. Chem. Acc., 132, 1–13, https://doi.org/10.1007/s00214-012-1309-5, 2012a.
Liyana-Arachchi, T. P., Valsaraj, K. T., and Hung, F. R.: Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene, J. Phys. Chem. A, 116, 8539–8546, https://doi.org/10.1021/jp304921c, 2012b.
Lodge, J. P., Baker, M. L., and Pierrard, J. M.: Observations on ion separation in dilute solutions by freezing, J. Chem. Phys., 24, 716–719, https://doi.org/10.1063/1.1742596, 1956.
Lomonaco, R., Albert, M., and Baker, I.: Microstructural evolution of fine-grained layers through the firn column at Summit, Greenland, J. Glaciol., 57, 755–762, https://doi.org/10.3189/002214311797409730, 2011.
Long, Y., Chaumerliac, N., Deguillaume, L., Leriche, M., and Champeau, F.: Effect of mixed-phase cloud on the chemical budget of trace gases: A modeling approach, Atmos. Res., 97, 540–554, https://doi.org/10.1016/j.atmosres.2010.05.005, 2010.
Lu, H., McCartney, S. A., and Sadtchenko, V.: H/D exchange kinetics in pure and \chemHCl doped polycrystalline ice at temperatures near its melting point: Structure, chemical transport, and phase transitions at grain boundaries, J. Chem. Phys., 130, 054501–054511, https://doi.org/10.1063/1.3039077, 2009.
Luo, J. and Chiang, Y.-M.: Wetting and Prewetting on Ceramic Surfaces, Annu. Rev. Mater. Res., 38, 227–249, https://doi.org/10.1146/annurev.matsci.38.060407.132431, 2008.
Mader, H. M.: The thermal-behavior of the water-vein system in polycrystalline ice, J. Glaciol., 38, 359–374, 1992.
Mantz, Y. A., Geiger, F. M., Molina, L. T., Molina, M. J., and Trout, B. L.: First-principles molecular-dynamics study of surface disordering of the (0001) face of hexagonal ice, J. Chem. Phys., 113, 10733–10743, https://doi.org/10.1063/1.1323959, 2000.
Mantz, Y. A., Geiger, F. M., Molina, L. T., Molina, M. J., and Trout, B. L.: First-principles theoretical study of molecular \chemHCl adsorption on a hexagonal ice (0001) surface, J. Phys. Chem. A, 105, 7037–7046, https://doi.org/10.1021/jp010817u, 2001a.
Mantz, Y. A., Geiger, F. M., Molina, L. T., Molina, M. J., and Trout, B. L.: The interaction of \chemHCl with the (0001) face of hexagonal ice studied theoretically via car–parrinello molecular dynamics, Chem. Phys. Lett., 348, 285–292, https://doi.org/10.1016/S0009-2614(01)01103-4, 2001b.
Matykiewiczová, N., Klánová, J., and Klán, P.: Photochemical degradation of PCBs in snow, Environ. Sci. Technol., 41, 8308–8314, https://doi.org/10.1021/es0714686, 2007a.
Matykiewiczová, N., Kurková, R., Klánová, J., and Klán, P.: Photochemically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice, J. Photoch. Photobio. A, 187, 24–32, https://doi.org/10.1016/j.jphotochem.2006.09.008, 2007b.
McConnell, J., Winterle, J., Bales, R., Thompson, A., and Stewart, R.: Physically based inversion of surface snow concentrations of H2O2 to atmospheric concentrations at south pole, Geophys. Res. Lett., 24, 441–444, https://doi.org/10.1029/97GL00183, 1997.
McConnell, J. R., Bales, R. C., Stewart, R. W., Thompson, A. M., Albert, M. R., and Ramos, R.: Physically based modelling of atmosphere-to-snow-to-firn transfer of H2O2 at South Pole, J. Geophys. Res., 103, 10561–10570, https://doi.org/10.1029/98JD00460, 1998.
McDonald, S. A., Marone, F., Hintermüller, C., Mikuljan, G., David, C., and Stampanoni, M.: Phase contrast X-ray tomographic microscopy for biological and materials science applications, Adv. Eng. Mater., 13, 116–121, https://doi.org/10.1002/adem.201000219, 2011.
McNeill, V. F., Loerting, T., Geiger, F. M., Trout, B. L., and Molina, M. J.: Hydrogen chloride-induced surface disordering on ice, P. Natl Acad. Sci. USA, 103, 9422–9427, https://doi.org/10.1073/pnas.0603494103, 2006.
McNeill, V. F., Geiger, F. M., Loerting, T., Trout, B. L., Molina, L. T., and Molina, M. J.: Interaction of hydrogen chloride with ice surfaces: The effects of grain size, surface roughness, and surface disorder, J. Phys. Chem. A, 111, 6274–6284, https://doi.org/10.1021/Jp068914g, 2007.
McNeill, V. F., Grannas, A. M., Abbatt, J. P. D., Ammann, M., Ariya, P., Bartels-Rausch, T., Domine, F., Donaldson, D. J., Guzman, M. I., Heger, D., Kahan, T. F., Klán, P., Masclin, S., Toubin, C., and Voisin, D.: Organics in environmental ices: Sources, chemistry, and impacts, Atmos. Chem. Phys., 12, 9653–9678, https://doi.org/10.5194/acp-12-9653-2012, 2012.
Meyer, T. and Wania, F.: Organic contaminant amplification during snowmelt, Water Res., 42, 1847–1865, https://doi.org/10.1016/j.watres.2007.12.016, 2008.
Michalowski, B. A., Francisco, J. S., Li, S. M., Barrie, L. A., Bottenheim, J. W., and Shepson, P. B.: A computer model study of multiphase chemistry in the Arctic boundary layer during Polar sunrise, J. Geophys. Res., 105, 15131–15145, https://doi.org/10.1029/2000JD900004, 2000.
Mitchell, D. L. and Lamb, D.: Influence of riming on the chemical-composition of snow in winter orographic storms, J. Geophys. Res., 94, 14831–14840, https://doi.org/10.1029/JD094iD12p14831, 1989.
Mizuno, Y. and Hanafusa, N.: Studies of surface properties of ice using nuclear magnetic resonance, J. Phys.-Paris, 48, 511–517, https://doi.org/10.1051/jphyscol:1987170, 1987.
Molinero, V. and Moore, E. B.: Water modeled as an intermediate element between carbon and silicon, J. Phys. Chem. B, 113, 4008–4016, https://doi.org/10.1021/jp805227c, 2009.
Morin, S., Marion, G. M., von Glasow, R., Voisin, D., Bouchez, J., and Savarino, J.: Precipitation of salts in freezing seawater and ozone depelition: A status report, Atmos. Chem. Phys., 8, 7317–7324, https://doi.org/10.5194/acp-8-7317-2008, 2008.
Moussa, S. G., Kuo, M. H., and McNeill, V. F.: Nitric acid-induced surface disordering on ice, Phys. Chem. Chem. Phys., 15, 10989–10995, https://doi.org/10.1039/c3cp50487e, 2013.
Muchová, E., Gladich, I., Picaud, S., Hoang, P. N. M., and Roeselová, M.: The ice–vapor interface and the melting point of ice Ih for the polarizable POL3 water model, J. Phys. Chem. A, 115, 5973–5982, https://doi.org/10.1021/jp110391q, 2011.
Mullins, W. W.: Theory of thermal grooving, J. Appl. Phys., 28, 333–339, https://doi.org/10.1063/1.1722742, 1957.
Mulvaney, R., Wolff, E. W., and Oates, K.: Sulphuric acid at grain boundaries in Antarctic ice, Nature, 331, 247–249, https://doi.org/10.1038/331247a0, 1988.
Murphy, E. J.: Generation of electromotive forces during freezing of water, J. Colloid Interface Sci., 32, 1–11, https://doi.org/10.1016/0021-9797(70)90094-9, 1970.
Murshed, M. M., Klapp, S. A., Enzmann, F., Szeder, T., Huthwelker, T., Stampanoni, M., Marone, F., Hintermüller, C., Bohrmann, G., Kuhs, W. F., and Kersten, M.: Natural gas hydrate investigations by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM), Geophys. Res. Lett., 35, L23612, https://doi.org/10.1029/2008GL035460, 2008.
Nada, H. and Furukawa, Y.: Anisotropy in structural phase transitions at ice surfaces: A molecular dynamics study, Appl. Surf. Sci., 121–122, 445–447, https://doi.org/10.1016/S0169-4332(97)00324-3, 1997.
Nasello, O. B., Di Prinzio, C. L., and Guzmán, P. G.: Temperature dependence of pure ice grain boundary mobility, Acta Mater., 53, 4863–4869, https://doi.org/10.1016/J.Actamat.2005.06.002, 2005.
Nasello, O. B., Navarro de Juarez, S., and Di Prinzio, C. L.: Measurement of self-diffusion on ice surface, Scripta Mater., 56, 1071–1073, https://doi.org/10.1016/j.scriptamat.2007.02.023, 2007.
Neftel, A., Bales, R. C., and Jacob, D. J.: H2O2 and HCHO in polar snow and their relation to atmospheric chemistry, pp. 249–264, Proceedings of the NATO advanced research workshop "Ice score studies of global biogeochemical cycles", Springer, Berlin, 1995.
Neshyba, S., Nugent, E., Roeselová, M., and Jungwirth, P.: Molecular dynamics study of ice–vapor interactions via the quasi-liquid layer, J. Phys. Chem. C, 113, 4597–4604, https://doi.org/10.1021/jp810589a, 2009.
Nye, J. and Frank, F.C.: Hydrology of the intergranular veins in a temperate glacier, Symposium on the Hydrology of Glaciers, 95, 157–161, 1973.
Nye, J. F.: Thermal-behavior of glacier and laboratory ice, J. Glaciol., 37, 401–413, 1991.
Obbard, R. W., Iliescu, D., Cullen, D., Chang, J., and Baker, I.: SEM}/{EDS comparison of polar and seasonal temperate ice, Microsc. Res. Tech., 62, 49–61, https://doi.org/10.1002/jemt.10381, 2003.
Obbard, R. W., Troderman, G., and Baker, I.: Imaging brine and air inclusions in sea ice using micro-X-ray computed tomography, J. Glaciol., 55, 1113–1115, 2009.
O'Concubhair, R. and Sodeau, J. R.: Freeze-induced formation of bromine/chlorine interhalogen species from aqueous halide ion solutions, Environ. Sci. Technol., 46, 10589–10596, https://doi.org/10.1021/es301988s, 2012.
O'Concubhair, R. and Sodeau, J. R.: The effect of freezing on reactions with environmental impact, Acc. Chem. Res., 46, 2716–2724, https://doi.org/10.1021/ar400114e, 2013.
O'Concubhair, R., O'Sullivan, D., and Sodeau, J. R.: Dark oxidation of dissolved gaseous mercury in polar ice mimics, Environ. Sci. Technol., 46, 4829–4836, https://doi.org/10.1021/es300309n, 2012.
O'Driscoll, P., Minogue, N., Takenaka, N., and Sodeau, J.: Release of nitric oxide and iodine to the atmosphere from the freezing of sea-salt aerosol components, J. Phys. Chem. A, 112, 1677–1682, https://doi.org/10.1021/Jp710464c, 2008.
Oltmans, S. J., Schnell, R. C., Sheridan, P. J., Peterson, R. E., Li, S. M., Winchester, J. W., Tans, P. P., Sturges, W. T., Kahl, J. D., and Barrie, L. A.: Seasonal surface ozone and filterable bromine relationship in the high Arctic, Atmos. Environ., 23, 2431–2441, https://doi.org/10.1016/0004-6981(89)90254-0, 1989.
O'Sullivan, D. and Sodeau, J. R.: Freeze-induced reactions: Formation of iodine- bromine interhalogen species from aqueous halide ion solutions, J. Phys. Chem. A, 114, 12208–12215, https://doi.org/10.1021/jp104910p, 2010.
Paesani, F. and Voth, G. A.: Quantum effects strongly influence the surface premelting of ice, J. Phys. Chem. C, 112, 324–327, https://doi.org/10.1021/jp710640e, 2008.
Park, S.-C., Moon, E.-S., and Kang, H.: Some fundamental properties and reactions of ice surfaces at low temperatures, Phys. Chem. Chem. Phys., 12, 12000–12011, https://doi.org/10.1039/C003592K, 2010.
Pasteur, E. C. and Mulvaney, R.: Migration of methane sulphonate in Antarctic firn and ice, J. Geophys. Res., 105, 11525–11534, https://doi.org/10.1029/2000jd900006, 2000.
Pereyra, R. G. and Carignano, M. A.: Ice nanocolumns: A molecular dynamics study, J. Phys. Chem. C, 113, 12699–12705, https://doi.org/10.1021/jp903404n, 2009.
Petitjean, M., Mirabel, P., and Calvé, S. L.: Uptake measurements of acetaldehyde on solid ice surfaces and on solid/liquid supercooled mixtures doped with HNO3 in the temperature range 203−253 K, J. Phys. Chem. A, 113, 5091–5098, https://doi.org/10.1021/jp810131f, 2009.
Petrenko, V. F. and Whitworth, R. W.: Physics of ice, Oxford University Press, New York, 1999.
Pfalzgraff, W. C., Hulscher, R. M., and Neshyba, S. P.: Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals, Atmos. Chem. Phys., 10, 2927–2935, https://doi.org/10.5194/acp-10-2927-2010, 2010.
Pfalzgraff, W. C., Neshyba, S., and Roeselová, M.: Comparative molecular dynamics study of vapor-exposed basal, prismatic and pyramidal surfaces of ice, J. Phys. Chem. A, 115, 6184–6193, https://doi.org/10.1021/jp111359, 2011.
Picaud, S.: Dynamics of TIP5P and TIP4P/ice potentials, J. Chem. Phys., 125, 174712, https://doi.org/10.1063/1.2370882, 2006.
Picaud, S., Hoang, P. N. M., Peybernès, N., Le Calvé, S., and Mirabel, P.: Adsorption of acetic acid on ice: Experiments and molecular dynamics simulations, J. Chem. Phys., 122, 194707, https://doi.org/10.1063/1.1888368, 2005.
Pincock, R. E.: Reactions in frozen systems, Acc. Chem. Res., 2, 97–103, https://doi.org/10.1021/ar50016a001, 1969.
Pinzer, B. and Schneebeli, M.: Breeding snow: An instrumented sample holder for simultaneous tomographic and thermal studies, Meas. Sci. Technol., 20, 095705, https://doi.org/10.1088/0957-0233/20/9/095705, 2009a.
Pinzer, B. and Schneebeli, M.: Snow metamorphism under alternating temperature gradients: Morphology and recrystallization in surface snow, Geophys. Res. Lett., 36, L23503, https://doi.org/10.1029/2009GL039618, 2009b.
Pinzer, B., Kerbrat, M., Huthwelker, T., Gäggeler, H. W., Schneebeli, M., and Ammann, M.: Diffusion of NOx and \chemHONO in snow: A laboratory study, J. Geophys. Res., 115, D03304, https://doi.org/10.1029/2009JD012459, 2010.
Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography, The Cryosphere, 6, 1141–1155, https://doi.org/10.5194/tc-6-1141-2012, 2012.
Pittenger, B., Fain, S., Cochran, M., Donev, J., Robertson, B., Szuchmacher, A., and Overney, R.: Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips, Phys. Rev. B, 63, 134102, https://doi.org/10.1103/PhysRevB.63.134102, 2001.
Poulida, O., Schwikowski, M., Baltensperger, U., Staehelin, J., and Gäggeler, H. W.: Scavenging of atmospheric constituents in mixed phase clouds at the High-Alpine site Jungfraujoch –- Part II. Influence of riming on the scavenging of particulate and gaseous chemical species, Atmos. Environ., 32, 3985–4000, https://doi.org/10.1016/S1352-2310(98)00131-9, 1998.
Pouvesle, N., Kippenberger, M., Schuster, G., and Crowley, J. N.: The interaction of H2O2 with ice surfaces between 203 and 233 K, Phys. Chem. Chem. Phys., 12, 15544–15550, https://doi.org/10.1039/C0cp01656j, 2010.
Pratt, K. A., Custard, K. D., Shepson, P. B., Douglas, T. A., Pohler, D., General, S., Zielcke, J., Simpson, W. R., Platt, U., Tanner, D. J., Gregory Huey, L., Carlsen, M., and Stirm, B. H.: Photochemical production of molecular bromine in Arctic surface snowpacks, Nature Geosci., 6, 351–356, 2013.
Price, W. S., Ide, H., and Arata, Y.: Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements, J. Phys. Chem. A, 103, 448–450, https://doi.org/10.1021/jp9839044, 1999.
Ram, K. and Anastasio, C.: Photochemistry of phenanthrene, pyrene, and fluoranthene in ice and snow, Atmos. Environ., 43, 2252–2259, https://doi.org/10.1016/j.atmosenv.2009.01.044, 2009.
Ramseier, R. O.: Self-diffusion of tritium in natural and synthetic ice monocrystals, J. Appl. Phys., 38, 2553, https://doi.org/10.1063/1.1709948, 1967.
Ray, D., Kurková, R., Hovorková, I., and Klán, P.: Determination of the specific surface area of snow using ozonation of 1,1-diphenylethylene, Environ. Sci. Technol., 45, 10061–10067, https://doi.org/10.1021/es202922k, 2011.
Ray, D., Malongwe, J. K., and Klán, P.: Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air–ice interface at low temperatures, Environ. Sci. Technol., 47, 6773–6780, https://doi.org/10.1021/es304812t, 2013.
Rempel, A. W., Waddington, E. D., Wettlaufer, J. S., and Worster, M. G.: Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion, Nature, 411, 568–571, https://doi.org/10.1038/35079043, 2001.
Rempel, A. W., Wettlaufer, J. S., and Waddington, E. D.: Anomalous diffusion of multiple impurity species: Predicted implications for the ice core climate records, J. Geophys. Res., 107, 2330, https://doi.org/10.1029/2002jb001857, 2002.
Richardson, C.: Phase relationsships in sea ice as a function of temperature, J. Glaciol., 17, 507–519, 1976.
Riche, F., Bartels-Rausch, T., Schreiber, S., Ammann, M., and Schneebeli, M.: Temporal evolution of surface and grain boundary area in artificial ice beads and implications for snow chemistry, J. Glaciol., 58, 815–817, https://doi.org/10.3189/2012JoG12J058, 2012.
Riordan, E., Minogue, N., Healy, D., O'Driscol, P., and Sodeau, J. R.: Spectroscopic and optimization modeling study of nitrous acid in aqueous solution, J. Phys. Chem. A, 109, 779–786, https://doi.org/10.1021/jp040269v, 2005.
Roberts, J. L., van Ommen, T. D., Curran, M. A. J., and Vance, T. R.: Methanesulphonic acid loss during ice-core storage: Recommendations based on a new diffusion coefficient, J. Glaciol., 55, 784–788, 2009.
Robinson, C., Boxe, C., Guzmán, M., Colussi, A., and Hoffmann, M.: Acidity of frozen electrolyte solutions, J. Phys. Chem. B, 110, 7613–7616, https://doi.org/10.1021/jp061169n, 2006.
Roth, C. M., Goss, K., and Schwarzenbach, R. P.: Sorption of diverse organic vapors to snow, Environ. Sci. Technol., 38, 4078–4084, https://doi.org/10.1021/es0350684, 2004.
Rothlisberger, R., Hutterli, M. A., Wolff, E. W., Mulvaney, R., Fischer, H., Bigler, M., Goto-Azuma, K., Hansson, M. E., Ruth, U., Siggaard-Andersen, M. L., and Steffensen, J. P.: Nitrate in Greenland and Antarctic ice cores: A detailed description of post-depositional processes, in: International Symposium on Ice Cores and Climate, edited by Wolff, E., vol. 000182023600035, pp. 209–216, Annals of Glaciology, Kangerlussuaq, Greenland, https://doi.org/10.3189/172756402781817220, 2001.
Ružička, R., Baráková, L., and Klán, P.: Photodecarbonylation of dibenzyl ketones and trapping of radical intermediates by copper(II) chloride in frozen aqueous solutions, J. Phys. Chem. B, 109, 9346–9353, https://doi.org/10.1021/jp044661k, 2005.
Sander, R., Burrows, J., and Kaleschke, L.: Carbonate precipitation in brine –- A potential trigger for tropospheric ozone depletion events, Atmos. Chem. Phys., 6, 4653–4658, https://doi.org/10.5194/acp-6-4653-2006, 2006.
Satoh, K., Uchida, T., Hondoh, T., and Mae, S.: Diffusion coefficients and solubility measurements of noble gases in ice crystals, Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, 10, 73–81, 1996.
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M., and Furukawa, Y.: Quasi-liquid layers on ice crystal surfaces are made up of two different phases, P. Natl. Acad. Sci. USA, 109, 1052–1055, https://doi.org/10.1073/pnas.1116685109, 2012.
Schneebeli, M. and Sokratov, S. A.: Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrol. Process, 18, 3655–3665, https://doi.org/10.1002/hyp.5800, 2004.
Schwander, J.: The transformation of snow to ice and the occlusion of gases, Environmental Record in Glaciers and Ice Sheets, 8, 53–67, 1989.
Schwartz, S. E.: Mass-transport considerations pertinent to aqueous-phase reactions of gases in liquid-water clouds, vol. G6 of Chemistry of Multiphase Atmospheric Systems\/, Springer Verlag, NATO ASI Series, New York, 1986.
Seok, B., Helmig, D., Williams, M. W., Liptzin, D., Chowanski, K., and Hueber, J.: An automated system for continuous measurements of trace gas fluxes through snow: An evaluation of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado, Biogeochemistry, 95, 95–113, https://doi.org/10.1007/s10533-009-9302-3, 2009.
Shepherd, T. D., Koc, M. A., and Molinero, V.: The quasi-liquid layer of ice under conditions of methane clathrate formation, J. Phys. Chem. C, 116, 12172–12180, https://doi.org/10.1021/jp303605t, 2012.
Shiraiwa, M., Pfrang, C., and Pöschl, U.: Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): The influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone, Atmos. Chem. Phys., 10, 3673–3691, https://doi.org/10.5194/acp-10-3673-2010, 2010.
Sigg, A., Staffelbach, T., and Neftel, A.: Gas-phase measurements of hydrogen-peroxide in Greenland and their meaning for the interpretation of H2O2 records in ice cores, J. Atmos. Chem., 14, 223–232, https://doi.org/10.1007/BF00115235, 1992.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007.
Smith, M. and Pounder, E. R.: Impurity concentration profiles in ice by an anthrone method, Can. J. Phys., 38, 354–368, https://doi.org/10.1139/p60-037, 1960.
Snider, J. R. and Huang, J.: Factors influencing the retention of hydrogen peroxide and molecular oxygen in rime ice, J. Geophys. Res., 103, 1405–1415, https://doi.org/10.1029/97jd02847, 1998.
Sokolov, O. and Abbatt, J. P. D.: Competitive adsorption of atmospheric trace gases onto ice at 228 K: HNO3/HCl, 1-butanol/acetic acid and 1-butanol/HCl, Geophys. Res. Lett., 29, 1851, https://doi.org/10.1029/2002gl014843, 2002.
Sola, M. I. and Corti, H. R.: Freezing induced electric potentials and pH changes in aqueous-solutions of electrolytes, An. Asoc. Quim. Argent., 81, 483–498, 1993.
Sommer, S., Appenzeller, C., Röthlisberger, R., Hutterli, M. A., Stauffer, B., Wagenbach, D., Oerter, H., Wilhelms, F., Miller, H., and Mulvaney, R.: Glacio-chemical study spanning the past 2 kyr on three ice cores from dronning maud land, Antarctica – 1. Annually resolved accumulation rates, J. Geophys. Res., 105, 29411–29421, https://doi.org/10.1029/2000JD900449, 2000.
Sommerfeld, R. A. and Lamb, D.: Preliminary measurements of SO2 adsorbed on ice, Geophys. Res. Lett., 13, 349–351, https://doi.org/10.1029/GL013i004p00349, 1986.
Spaulding, N. E., Meese, D. A., and Baker, I.: Advanced microstructural characterization of four east Antarctic firn/ice cores, J. Glaciol., 57, 796–810, 2011.
Staffelbach, T., Neftel, A., Stauffer, B., and Jacob, D.: A record of the atmospheric methane sink from formaldehyde in polar ice cores, Nature, 349, 603–605, https://doi.org/10.1038/349603a0, 1991.
Starr, D. E., Pan, D., Newberg, J. T., Ammann, M., Wang, E. G., Michaelides, A., and Bluhm, H.: Acetone adsorption on ice investigated by X-ray spectroscopy and density functional theory, Phys. Chem. Chem. Phys., 13, 19988–19996, https://doi.org/10.1039/C1CP21493D, 2011.
Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M. E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C.: A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem. Phys., 8, 1445–1482, https://doi.org/10.5194/acp-8-1445-2008, 2008.
Strauss, H. L., Chen, Z., and Loong, C. K.: The diffusion of H2 in hexagonal ice at low temperatures, J. Chem. Phys., 101, 7177–7180, https://doi.org/10.1063/1.468303, 1994.
Symington, A., Cox, R. A., and Fernandez, M. A.: Uptake of organic acids on ice surfaces: Evidence for surface modification and hydrate formation, Z. Phys. Chem., 224, 1219–1245, https://doi.org/10.1524/zpch.2010.6149, 2010.
Szabo, D. and Schneebeli, M.: Subsecond sintering of ice, Appl. Phys. Lett., 90, 151916, https://doi.org/10.1063/1.2721391, 2007.
Takenaka, N. and Bandow, H.: Chemical kinetics of reactions in the unfrozen solution of ice, J. Phys. Chem. A, 111, 8780–8786, https://doi.org/10.1021/jp0738356, 2007.
Takenaka, N., Ueda, A., and Maeda, Y.: Acceleration of the rate of nitrite oxidation by freezing in aqueous solution, Nature, 358, 736–738, https://doi.org/10.1038/358736a0, 1992.
Takenaka, N., Ueda, A., Daimon, T., Bandow, H., Dohmaru, T., and Maeda, Y.: Acceleration mechanism of chemical reaction by freezing: The reaction of nitrous acid with dissolved oxygen, J. Phys. Chem., 100, 13874–13884, https://doi.org/10.1021/jp9525806, 1996.
Takenaka, N., Furuya, S., Sato, K., Bandow, H., Maeda, Y., and Furukawa, Y.: Rapid reaction of sulfide with hydrogen peroxide and formation of different final products by freezing compared to those in solution, Int. J. Chem. Kinet., 35, 198–205, https://doi.org/10.1002/kin.10118, 2003.
Tasaki, Y. and Okada, T.: Adsorption-partition switching of retention mechanism in ice chromatography with NaCl-doped water-ice, Anal. Sci., 25, 177–181, https://doi.org/10.2116/analsci.25.177, 2009.
Thibert, E. and Domine, F.: Thermodynamics and kinetics of the solid solution of HCl in ice, J. Phys. Chem. B, 101, 3554–3565, https://doi.org/10.1021/jp962115o, 1997.
Thibert, E. and Domine, F.: Thermodynamics and kinetics of the solid solution of HNO3 in ice, J. Phys. Chem. B, 102, 4432–4439, https://doi.org/10.1021/jp980569a, 1998.
Thomas, D. N. and Dieckmann, G. S.: Sea ice, Wiley-Blackwell, New York, 2 edn., 2009.
Thomas, J. L., Stutz, J., Lefer, B., Huey, L. G., Toyota, K., Dibb, J. E., and von Glasow, R.: Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results, Atmos. Chem. Phys., 11, 4899–4914, https://doi.org/10.5194/acp-11-4899-2011, 2011.
Thomas, J. L., Dibb, J. E., Huey, L. G., Liao, J., Tanner, D., Lefer, B., von Glasow, R., and Stutz, J.: Modeling chemistry in and above snow at Summit, Greenland – Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer, Atmos. Chem. Phys., 12, 6537–6554, https://doi.org/10.5194/acp-12-6537-2012, 2012.
Thompson, A. M.: Photochemical modeling of chemical cycles: Issues related to the interpretation of ice core data, 265–297, Springer Verlag, NATO ASI Series I, New York, 1995.
Thomson, E.: Erratum: Abrupt grain boundary melting in ice [phys. Rev. E 70, 061606 (2004)], Phys. Rev. E, 82, 039907(E), https://doi.org/10.1103/PhysRevE.82.039907, 2010.
Thomson, E. S., Hansen-Goos, H., Wettlaufer, J. S., and Wilen, L. A.: Grain boundary melting in ice, J. Chem. Phys., 138, 124707, https://doi.org/10.1063/1.4797468, 2013.
Toubin, C., Picaud, S., Hoang, P. N. M., Girardet, C., Demirdjian, B., Ferry, D., and Suzanne, J.: Dynamics of ice layers deposited on \chemMgO(001): Quasielastic neutron scattering experiments and molecular dynamics simulations, J. Chem. Phys., 114, 6371–6381, https://doi.org/10.1063/1.1355238, 2001.
Toyota, K., Dastoor, A. P., and Ryzhkov, A.: Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation, Atmos. Chem. Phys. Discuss., 13, 22151–22220, https://doi.org/10.5194/acpd-13-22151-2013, 2013a.
Toyota, K., McConnell, J. C., Staebler, R. M., and Dastoor, A. P.: Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone, Atmos. Chem. Phys. Discuss., 13, 20341–20418, https://doi.org/10.5194/acpd-13-20341-2013, 2013b.
Traversi, R., Becagli, S., Castellano, E., Marino, F., Rugi, F., Severi, M., De Angelis, M., Fischer, H., Hansson, M., Stauffer, B., Steffensen, J. P., Bigler, M., and Udisti, R.: Sulfate spikes in the deep layers of EPICA-Dome C ice core: Evidence of glaciological artifacts, Environ. Sci. Technol., 43, 8737–8743, https://doi.org/10.1021/es901426y, 2009.
Ullerstam, M. and Abbatt, J. P. D.: Burial of gas-phase HNO3 by growing ice surfaces under tropospheric conditions, Phys. Chem. Chem. Phys., 7, 3596–3600, https://doi.org/10.1039/b507797d, 2005.
Ullerstam, M., Thornberry, T., and Abbatt, J. P. D.: Uptake of gas-phase nitric acid to ice at low partial pressures: Evidence for unsaturated surface coverage, Faraday Discuss., 130, 211–226, https://doi.org/10.1039/b417418f, 2005.
Ulrich, T., Ammann, M., Leutwyler, S., and Bartels-Rausch, T.: The adsorption of peroxynitric acid on ice between 230 K and 253 K, Atmos. Chem. Phys., 12, 1833–1845, https://doi.org/10.5194/acp-12-1833-2012, 2012.
Vega, C. and Abascal, J. L. F.: Simulating water with rigid non-polarizable models: A general perspective, Phys. Chem. Chem. Phys., 13, 19663–19688, https://doi.org/10.1039/C1CP22168J, 2011.
Vega, C., Martin-Conde, M., and Patrykiejew, A.: Absence of superheating for ice Ih with a free surface: A new method of determining the melting point of different water models, Mol. Phys., 104, 3583–3592, https://doi.org/10.1080/00268970600967948, 2006.
Vega, C., Abascal, J. L. F., Conde, M. M., and Aragones, J. L.: What ice can teach us about water interactions: A critical comparison of the performance of different water models, Faraday Discuss., 141, 251–276, https://doi.org/10.1039/b805531a, 2009.
Verdaguer, A., Sacha, G. M., and Salmeron, M.: Molecular structure of water at interfaces: Wetting at the nanometer scale, Chem. Rev., 106, 1478–1510, https://doi.org/10.1021/cr040376l, 2006.
Voisin, D., Jaffrezo, J.-L., Houdier, S., Barret, M., Cozic, J., King, M. D., France, J. L., Reay, H. J., Grannas, A., Kos, G., Ariya, P. A., Beine, H. J., and Domine, F.: Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow, J. Geophys. Res., 117, D00R19, https://doi.org/10.1029/2011JD0166122012, 2012.
von Hessberg, P., Pouvesle, N., Winkler, A. K., Schuster, G., and Crowley, J. N.: Interaction of formic and acetic acid with ice surfaces between 187 and 227 K. Investigation of single species- and competitive adsorption, Phys. Chem. Chem. Phys., 10, 2345–2355, https://doi.org/10.1039/B800831k, 2008.
Vrbka, L. and Jungwirth, P.: Brine rejection from freezing salt solutions: A molecular dynamics study, Phys. Rev. Lett., 95, 148501, https://doi.org/10.1103/PhysRevLett.95.148501, 2005.
Waff, H. S. and Bulau, J. R.: Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions, J. Geophys. Res., 84, 6109–6114, https://doi.org/10.1029/JB084iB11p06109, 1979.
Wang, S. Y.: Photochemical reactions in frozen solutions, Nature, 190, 690–694, https://doi.org/10.1038/190690a0, 1961.
Wang, S. Y.: The mechanism for frozen aqueous solution irradiation of pyrimidines, Photochem. Photobiol., 3, 395–398, https://doi.org/10.1111/j.1751-1097.1964.tb08161.x, 1964.
Wania, F., Hoff, J. T., Jia, C. Q., and Mackay, D.: The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals, Environ. Pollut., 102, 25–41, https://doi.org/10.1016/S0269-7491(98)00073-6, 1998.
Weber, J., Kurková, R., Klánová, J., Klán, P., and Halsall, C.: Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments, Environ. Pollut., 157, 3308–3313, https://doi.org/10.1016/j.envpol.2009.05.045, 2009.
Weeks, W. F. and Ackley, S. F.: The growth, structure and properties of sea ice, 9–164, Plenum Press, New York, 1986.
Wei, X., Miranda, P., and Shen, Y.: Surface vibrational spectroscopic study of surface melting of ice, Phys. Rev. Lett., 86, 1554–1557, https://doi.org/10.1103/PhysRevLett.86.1554, 2001.
Wettlaufer, J. S.: Impurity effects in the premelting of ice, Phys. Rev. Lett., 82, 2516–2519, https://doi.org/10.1103/PhysRevLett.82.2516, 1999.
Wilson, P. W. and Haymet, A. D. J.: Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces, J. Phys. Chem. B, 112, 11750–11755, https://doi.org/10.1021/jp804047x, 2008.
Wolff, E. W.: Nitrate in polar ice, Ice Core Studies of Global Biogeochemical Cycles, 30, 195–224, 1995.
Workman, E. and Reynolds, S.: Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity, Phys. Rev., 78, 254–259, https://doi.org/10.1103/PhysRev.78.254, 1950.
Wren, S. N. and Donaldson, D. J.: Exclusion of nitrate to the air-ice interface during freezing, J. Phys. Chem. Let., 2, 1967–1971, https://doi.org/10.1021/Jz2007484, 2011.
Wren, S. N. and Donaldson, D. J.: How does deposition of gas phase species affect pH at frozen salty interfaces?, Atmos. Chem. Phys., 12, 10065–10073, https://doi.org/10.5194/acp-12-10065-2012, 2012a.
Wren, S. N. and Donaldson, D. J.: Laboratory study of pH at the air–ice interface, J. Phys. Chem. C, 116, 10171–10180, https://doi.org/10.1021/jp3021936, 2012b.
Wren, S., Kahan, T. F., Jumaa, K., and Donaldson, D. J.: Spectroscopic studies of the heterogeneous reaction between O3(g) and halides at the surface of frozen salt solutions, J. Geophys. Res., 115, D16309, https://doi.org/10.1029/2010JD013929, 2010.
Zhu, C., Xiang, B., Chu, L. T., and Zhu, L.: 308 nm photolysis of nitric acid in the gas phase, on aluminum surfaces, and on ice films, J. Phys. Chem. A, 114, 2561–2568, https://doi.org/10.1021/jp909867a, 2010.