Articles | Volume 13, issue 15
https://doi.org/10.5194/acp-13-7725-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-7725-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system – an integrated modelling approach
J. Brandt
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
J. D. Silver
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
J. H. Christensen
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
M. S. Andersen
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
J. H. Bønløkke
Aarhus University, Section of Environment, Occupation, and Health, Institute of Public Health, Bartholins Allé 2, Building 1260, 8000 Aarhus C, Denmark
T. Sigsgaard
Aarhus University, Section of Environment, Occupation, and Health, Institute of Public Health, Bartholins Allé 2, Building 1260, 8000 Aarhus C, Denmark
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
A. Gross
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
A. B. Hansen
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
K. M. Hansen
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
G. B. Hedegaard
now at: Centre for Environmental and Climate Research, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
E. Kaas
University of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark, Denmark
L. M. Frohn
Aarhus University, AU Knowledge, Tuborgvej 164, 2400 København NV, Denmark
Related authors
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
Jiemei Liu, Jesper H. Christensen, Zhuyun Ye, Shikui Dong, Camilla Geels, Jørgen Brandt, Athanasios Nenes, Yuan Yuan, and Ulas Im
Atmos. Chem. Phys., 24, 10849–10867, https://doi.org/10.5194/acp-24-10849-2024, https://doi.org/10.5194/acp-24-10849-2024, 2024
Short summary
Short summary
China was chosen as an example to conduct a quantitative analysis using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from the Weather Research and Forecasting (WRF) model. Meteorological conditions and emission inventories contributed 46 % (65 %) and 54 % (35 %) to the variations in PM2.5 concentrations (oxidative potential – OP), respectively, highlighting secondary aerosol formation and biomass burning as the primary contributors to PM2.5 and OP levels.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
Jaakko Kukkonen, Susana López-Aparicio, David Segersson, Camilla Geels, Leena Kangas, Mari Kauhaniemi, Androniki Maragkidou, Anne Jensen, Timo Assmuth, Ari Karppinen, Mikhail Sofiev, Heidi Hellén, Kari Riikonen, Juha Nikmo, Anu Kousa, Jarkko V. Niemi, Niko Karvosenoja, Gabriela Sousa Santos, Ingrid Sundvor, Ulas Im, Jesper H. Christensen, Ole-Kenneth Nielsen, Marlene S. Plejdrup, Jacob Klenø Nøjgaard, Gunnar Omstedt, Camilla Andersson, Bertil Forsberg, and Jørgen Brandt
Atmos. Chem. Phys., 20, 4333–4365, https://doi.org/10.5194/acp-20-4333-2020, https://doi.org/10.5194/acp-20-4333-2020, 2020
Short summary
Short summary
Residential wood combustion can cause substantial emissions of fine particulate matter and adverse health effects. This study has, for the first time, evaluated the impacts of residential wood combustion in a harmonised manner in four Nordic cities. Wood combustion caused major shares of fine particle concentrations in Oslo (up to 60 %) and Umeå (up to 30 %) and also notable shares in Copenhagen (up to 20 %) and Helsinki (up to 15 %).
Ulas Im, Jesper H. Christensen, Ole-Kenneth Nielsen, Maria Sand, Risto Makkonen, Camilla Geels, Camilla Anderson, Jaakko Kukkonen, Susana Lopez-Aparicio, and Jørgen Brandt
Atmos. Chem. Phys., 19, 12975–12992, https://doi.org/10.5194/acp-19-12975-2019, https://doi.org/10.5194/acp-19-12975-2019, 2019
Short summary
Short summary
Sectoral contributions of anthropogenic emissions in Denmark, Finland, Norway and Sweden on air pollution and mortality over the Nordic and the Arctic regions are calculated. 80 % of PM2.5 over the Nordic countries is transported from outside Scandinavia. Residential combustion, industry and traffic are the main sectors to be targeted in emission mitigation. Exposure to ambient air pollution in the Nordic countries leads to more than 10 000 deaths in the region annually and costs EUR 7 billion.
Patricia Tarín-Carrasco, María Morales-Suárez-Varela, Ulas Im, Jørgen Brandt, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 19, 9385–9398, https://doi.org/10.5194/acp-19-9385-2019, https://doi.org/10.5194/acp-19-9385-2019, 2019
Short summary
Short summary
Air pollution has important implications for human health and external societal costs and is closely related to climate change. This work assesses the impacts of present and future air pollution on several cardiovascular and respiratory pathologies and estimates the costs associated with these health impacts on the European population. Premature deaths are the most important problem in terms of cases and costs (418 700 cases and EUR 158 billion per year, increasing by 17 % in the future).
Marta G. Vivanco, Mark R. Theobald, Héctor García-Gómez, Juan Luis Garrido, Marje Prank, Wenche Aas, Mario Adani, Ummugulsum Alyuz, Camilla Andersson, Roberto Bellasio, Bertrand Bessagnet, Roberto Bianconi, Johannes Bieser, Jørgen Brandt, Gino Briganti, Andrea Cappelletti, Gabriele Curci, Jesper H. Christensen, Augustin Colette, Florian Couvidat, Cornelis Cuvelier, Massimo D'Isidoro, Johannes Flemming, Andrea Fraser, Camilla Geels, Kaj M. Hansen, Christian Hogrefe, Ulas Im, Oriol Jorba, Nutthida Kitwiroon, Astrid Manders, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Luca Pozzoli, Efisio Solazzo, Svetlana Tsyro, Alper Unal, Peter Wind, and Stefano Galmarini
Atmos. Chem. Phys., 18, 10199–10218, https://doi.org/10.5194/acp-18-10199-2018, https://doi.org/10.5194/acp-18-10199-2018, 2018
Short summary
Short summary
European wet and dry atmospheric deposition of N and S estimated by 14 air quality models was found to vary substantially. An ensemble of models meeting acceptability criteria was used to estimate the exceedances of the critical loads for N in habitats within the Natura 2000 network, as well as their lower and upper limits. Scenarios with 20 % emission reductions in different regions of the world showed that European emissions are responsible for most of the N and S deposition in Europe.
Ulas Im, Jesper Heile Christensen, Camilla Geels, Kaj Mantzius Hansen, Jørgen Brandt, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Peng Liu, Uarporn Nopmongcol, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 8929–8952, https://doi.org/10.5194/acp-18-8929-2018, https://doi.org/10.5194/acp-18-8929-2018, 2018
Short summary
Short summary
We evaluate the impact of global and regional anthropogenic emission reductions on major air pollutant levels over Europe and North America, using a multi-model ensemble of regional chemistry and transport models. Results show that ozone levels are largely driven by long-range transport over both continents while other pollutants such as carbon monoxide or aerosols are mainly controlled by domestic sources. Use of multi-model ensembles can help to reduce the uncertainties in individual models.
Ulas Im, Jørgen Brandt, Camilla Geels, Kaj Mantzius Hansen, Jesper Heile Christensen, Mikael Skou Andersen, Efisio Solazzo, Ioannis Kioutsioukis, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Ciao-Kai Liang, Uarporn Nopmongcol, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta Garcia Vivanco, Jason West, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, https://doi.org/10.5194/acp-18-5967-2018, 2018
Short summary
Short summary
The impacts of air pollution on human health and their costs in Europe and the United States for the year 2010 ared modeled by a multi-model ensemble. In Europe, the number of premature deaths is calculated to be 414 000, while in the US it is estimated to be 160 000. Health impacts estimated by individual models can vary up to a factor of 3. Results show that the domestic emissions have the largest impact on premature deaths, compared to foreign sources.
Efisio Solazzo, Roberto Bianconi, Christian Hogrefe, Gabriele Curci, Paolo Tuccella, Ummugulsum Alyuz, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Johannes Bieser, Jørgen Brandt, Jesper H. Christensen, Augistin Colette, Xavier Francis, Andrea Fraser, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Ulas Im, Astrid Manders, Uarporn Nopmongcol, Nutthida Kitwiroon, Guido Pirovano, Luca Pozzoli, Marje Prank, Ranjeet S. Sokhi, Alper Unal, Greg Yarwood, and Stefano Galmarini
Atmos. Chem. Phys., 17, 3001–3054, https://doi.org/10.5194/acp-17-3001-2017, https://doi.org/10.5194/acp-17-3001-2017, 2017
Short summary
Short summary
As part of the third phase of AQMEII, this study uses timescale analysis to apportion error to the responsible processes, detect causes of model error, and identify the processes and scales that require dedicated investigations. The analysis tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of model biases for ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature over Europe and North America.
T.-B. Ottosen, K. E. Kakosimos, C. Johansson, O. Hertel, J. Brandt, H. Skov, R. Berkowicz, T. Ellermann, S. S. Jensen, and M. Ketzel
Geosci. Model Dev., 8, 3231–3245, https://doi.org/10.5194/gmd-8-3231-2015, https://doi.org/10.5194/gmd-8-3231-2015, 2015
Short summary
Short summary
Semi-parameterised street canyon models are popular due to their speed and low input requirements. One often-used assumption is that emissions are homogeneously distributed in the entire length and width of the street. It is thus the aim of the present study to analyse the impact of this assumption by implementing an inhomogeneous emission geometry scheme and validating it. The results show an improved performance, however, confounded by challenges in estimating the emissions accurately.
Q. T. Nguyen, M. K. Christensen, F. Cozzi, A. Zare, A. M. K. Hansen, K. Kristensen, T. E. Tulinius, H. H. Madsen, J. H. Christensen, J. Brandt, A. Massling, J. K. Nøjgaard, and M. Glasius
Atmos. Chem. Phys., 14, 8961–8981, https://doi.org/10.5194/acp-14-8961-2014, https://doi.org/10.5194/acp-14-8961-2014, 2014
A. M. K. Hansen, K. Kristensen, Q. T. Nguyen, A. Zare, F. Cozzi, J. K. Nøjgaard, H. Skov, J. Brandt, J. H. Christensen, J. Ström, P. Tunved, R. Krejci, and M. Glasius
Atmos. Chem. Phys., 14, 7807–7823, https://doi.org/10.5194/acp-14-7807-2014, https://doi.org/10.5194/acp-14-7807-2014, 2014
A. Zare, J. H. Christensen, A. Gross, P. Irannejad, M. Glasius, and J. Brandt
Atmos. Chem. Phys., 14, 2735–2756, https://doi.org/10.5194/acp-14-2735-2014, https://doi.org/10.5194/acp-14-2735-2014, 2014
J. Brandt, J. D. Silver, J. H. Christensen, M. S. Andersen, J. H. Bønløkke, T. Sigsgaard, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, E. Kaas, and L. M. Frohn
Atmos. Chem. Phys., 13, 7747–7764, https://doi.org/10.5194/acp-13-7747-2013, https://doi.org/10.5194/acp-13-7747-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
G. B. Hedegaard, J. H. Christensen, and J. Brandt
Atmos. Chem. Phys., 13, 3569–3585, https://doi.org/10.5194/acp-13-3569-2013, https://doi.org/10.5194/acp-13-3569-2013, 2013
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
Jiemei Liu, Jesper H. Christensen, Zhuyun Ye, Shikui Dong, Camilla Geels, Jørgen Brandt, Athanasios Nenes, Yuan Yuan, and Ulas Im
Atmos. Chem. Phys., 24, 10849–10867, https://doi.org/10.5194/acp-24-10849-2024, https://doi.org/10.5194/acp-24-10849-2024, 2024
Short summary
Short summary
China was chosen as an example to conduct a quantitative analysis using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from the Weather Research and Forecasting (WRF) model. Meteorological conditions and emission inventories contributed 46 % (65 %) and 54 % (35 %) to the variations in PM2.5 concentrations (oxidative potential – OP), respectively, highlighting secondary aerosol formation and biomass burning as the primary contributors to PM2.5 and OP levels.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 22, 8897–8934, https://doi.org/10.5194/acp-22-8897-2022, https://doi.org/10.5194/acp-22-8897-2022, 2022
Short summary
Short summary
We study the interannual variability in Australian carbon fluxes for 2015–2019 derived from OCO-2 satellite data. Our results suggest that Australia's semi-arid ecosystems are highly responsive to variations in climate drivers such as rainfall and temperature. We found that high rainfall and low temperatures recorded in 2016 led to an anomalous carbon sink over savanna and sparsely vegetated regions, while unprecedented dry and hot weather in 2019 led to anomalous carbon release.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021, https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
Short summary
Semi-arid ecosystems such as those in Australia are evolving and might play an essential role in the future of climate change. We use carbon dioxide concentrations derived from the OCO-2 satellite instrument and a regional transport model to understand if Australia was a carbon sink or source of CO2 in 2015. Our research's main findings suggest that Australia acted as a carbon sink of about −0.41 ± 0.08 petagrams of carbon in 2015, driven primarily by savanna and sparsely vegetated ecosystems.
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
Jérôme Barré, Hervé Petetin, Augustin Colette, Marc Guevara, Vincent-Henri Peuch, Laurence Rouil, Richard Engelen, Antje Inness, Johannes Flemming, Carlos Pérez García-Pando, Dene Bowdalo, Frederik Meleux, Camilla Geels, Jesper H. Christensen, Michael Gauss, Anna Benedictow, Svetlana Tsyro, Elmar Friese, Joanna Struzewska, Jacek W. Kaminski, John Douros, Renske Timmermans, Lennart Robertson, Mario Adani, Oriol Jorba, Mathieu Joly, and Rostislav Kouznetsov
Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, https://doi.org/10.5194/acp-21-7373-2021, 2021
Short summary
Short summary
This study provides a comprehensive assessment of air quality changes across the main European urban areas induced by the COVID-19 lockdown using satellite observations, surface site measurements, and the forecasting system from the Copernicus Atmospheric Monitoring Service (CAMS). We demonstrate the importance of accounting for weather and seasonal variability when calculating such estimates.
Robert G. Ryan, Jeremy D. Silver, Richard Querel, Dan Smale, Steve Rhodes, Matt Tully, Nicholas Jones, and Robyn Schofield
Atmos. Meas. Tech., 13, 6501–6519, https://doi.org/10.5194/amt-13-6501-2020, https://doi.org/10.5194/amt-13-6501-2020, 2020
Short summary
Short summary
Models have identified Australasia as a formaldehyde (HCHO) hotspot from vegetation sources, but few measurement studies exist to verify this. We compare, and find good agreement between, HCHO measurements using three – two ground-based and one satellite-based – different spectroscopic techniques in Australia and New Zealand. This gives confidence in using satellite observations to study HCHO and associated air chemistry and pollution problems in this under-studied part of the world.
Yohanna Villalobos, Peter Rayner, Steven Thomas, and Jeremy Silver
Atmos. Chem. Phys., 20, 8473–8500, https://doi.org/10.5194/acp-20-8473-2020, https://doi.org/10.5194/acp-20-8473-2020, 2020
Short summary
Short summary
Estimated carbon fluxes for Australia are subject to considerable uncertainty. We ran simulation experiments over Australia to determine how much these uncertainties can be constrained using satellite data. We found that the satellite data has the potential to reduce these uncertainties up to 80 % across the whole continent. For 1 month, this percentage corresponds to 0.51 Pg C y-1 for Australia. This method could lead to significantly more accurate estimates of Australia's carbon budget.
Jaakko Kukkonen, Susana López-Aparicio, David Segersson, Camilla Geels, Leena Kangas, Mari Kauhaniemi, Androniki Maragkidou, Anne Jensen, Timo Assmuth, Ari Karppinen, Mikhail Sofiev, Heidi Hellén, Kari Riikonen, Juha Nikmo, Anu Kousa, Jarkko V. Niemi, Niko Karvosenoja, Gabriela Sousa Santos, Ingrid Sundvor, Ulas Im, Jesper H. Christensen, Ole-Kenneth Nielsen, Marlene S. Plejdrup, Jacob Klenø Nøjgaard, Gunnar Omstedt, Camilla Andersson, Bertil Forsberg, and Jørgen Brandt
Atmos. Chem. Phys., 20, 4333–4365, https://doi.org/10.5194/acp-20-4333-2020, https://doi.org/10.5194/acp-20-4333-2020, 2020
Short summary
Short summary
Residential wood combustion can cause substantial emissions of fine particulate matter and adverse health effects. This study has, for the first time, evaluated the impacts of residential wood combustion in a harmonised manner in four Nordic cities. Wood combustion caused major shares of fine particle concentrations in Oslo (up to 60 %) and Umeå (up to 30 %) and also notable shares in Copenhagen (up to 20 %) and Helsinki (up to 15 %).
Ulas Im, Jesper H. Christensen, Ole-Kenneth Nielsen, Maria Sand, Risto Makkonen, Camilla Geels, Camilla Anderson, Jaakko Kukkonen, Susana Lopez-Aparicio, and Jørgen Brandt
Atmos. Chem. Phys., 19, 12975–12992, https://doi.org/10.5194/acp-19-12975-2019, https://doi.org/10.5194/acp-19-12975-2019, 2019
Short summary
Short summary
Sectoral contributions of anthropogenic emissions in Denmark, Finland, Norway and Sweden on air pollution and mortality over the Nordic and the Arctic regions are calculated. 80 % of PM2.5 over the Nordic countries is transported from outside Scandinavia. Residential combustion, industry and traffic are the main sectors to be targeted in emission mitigation. Exposure to ambient air pollution in the Nordic countries leads to more than 10 000 deaths in the region annually and costs EUR 7 billion.
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019, https://doi.org/10.5194/bg-16-3069-2019, 2019
Short summary
Short summary
This study presents an estimate of global terrestrial photosynthesis. We make use of satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and estimate photosynthetic carbon uptake. This new framework incorporates nonlinear, process-based understanding of the link between fluorescence and photosynthesis, an advance on past approaches. This will aid in the utility of fluorescence to quantify terrestrial carbon cycle feedbacks.
Patricia Tarín-Carrasco, María Morales-Suárez-Varela, Ulas Im, Jørgen Brandt, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 19, 9385–9398, https://doi.org/10.5194/acp-19-9385-2019, https://doi.org/10.5194/acp-19-9385-2019, 2019
Short summary
Short summary
Air pollution has important implications for human health and external societal costs and is closely related to climate change. This work assesses the impacts of present and future air pollution on several cardiovascular and respiratory pathologies and estimates the costs associated with these health impacts on the European population. Premature deaths are the most important problem in terms of cases and costs (418 700 cases and EUR 158 billion per year, increasing by 17 % in the future).
Kathryn M. Emmerson, Jeremy D. Silver, Edward Newbigin, Edwin R. Lampugnani, Cenk Suphioglu, Alan Wain, and Elizabeth Ebert
Geosci. Model Dev., 12, 2195–2214, https://doi.org/10.5194/gmd-12-2195-2019, https://doi.org/10.5194/gmd-12-2195-2019, 2019
Short summary
Short summary
We present the first representation of grass pollen in a 3-D dispersion model in Australia, tested using observations from eight counting sites in Victoria. The technology was developed in response to the severe thunderstorm asthma event which took place in Melbourne in November 2016. A total of 10 pollen emission methodologies were developed and evaluated. The best results were obtained using statistical methods that included elements of the satellite derived enhanced vegetation index.
Anne Sofie Lansø, Thomas Luke Smallman, Jesper Heile Christensen, Mathew Williams, Kim Pilegaard, Lise-Lotte Sørensen, and Camilla Geels
Biogeosciences, 16, 1505–1524, https://doi.org/10.5194/bg-16-1505-2019, https://doi.org/10.5194/bg-16-1505-2019, 2019
Short summary
Short summary
Although coastal regions only amount to 7 % of the global oceans, their contribution to the global oceanic surface exchange of CO2 is much greater. In this study, we gain detailed insight into how these coastal marine fluxes compare to CO2 exchange from coastal land regions. Annually, the coastal marine exchanges are smaller than the total uptake of CO2 from the land surfaces within the study area but comparable in size to terrestrial fluxes from individual land cover classes of the region.
Marta G. Vivanco, Mark R. Theobald, Héctor García-Gómez, Juan Luis Garrido, Marje Prank, Wenche Aas, Mario Adani, Ummugulsum Alyuz, Camilla Andersson, Roberto Bellasio, Bertrand Bessagnet, Roberto Bianconi, Johannes Bieser, Jørgen Brandt, Gino Briganti, Andrea Cappelletti, Gabriele Curci, Jesper H. Christensen, Augustin Colette, Florian Couvidat, Cornelis Cuvelier, Massimo D'Isidoro, Johannes Flemming, Andrea Fraser, Camilla Geels, Kaj M. Hansen, Christian Hogrefe, Ulas Im, Oriol Jorba, Nutthida Kitwiroon, Astrid Manders, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Luca Pozzoli, Efisio Solazzo, Svetlana Tsyro, Alper Unal, Peter Wind, and Stefano Galmarini
Atmos. Chem. Phys., 18, 10199–10218, https://doi.org/10.5194/acp-18-10199-2018, https://doi.org/10.5194/acp-18-10199-2018, 2018
Short summary
Short summary
European wet and dry atmospheric deposition of N and S estimated by 14 air quality models was found to vary substantially. An ensemble of models meeting acceptability criteria was used to estimate the exceedances of the critical loads for N in habitats within the Natura 2000 network, as well as their lower and upper limits. Scenarios with 20 % emission reductions in different regions of the world showed that European emissions are responsible for most of the N and S deposition in Europe.
Ulas Im, Jesper Heile Christensen, Camilla Geels, Kaj Mantzius Hansen, Jørgen Brandt, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Peng Liu, Uarporn Nopmongcol, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 8929–8952, https://doi.org/10.5194/acp-18-8929-2018, https://doi.org/10.5194/acp-18-8929-2018, 2018
Short summary
Short summary
We evaluate the impact of global and regional anthropogenic emission reductions on major air pollutant levels over Europe and North America, using a multi-model ensemble of regional chemistry and transport models. Results show that ozone levels are largely driven by long-range transport over both continents while other pollutants such as carbon monoxide or aerosols are mainly controlled by domestic sources. Use of multi-model ensembles can help to reduce the uncertainties in individual models.
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-270, https://doi.org/10.5194/bg-2018-270, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This study presents a global estimate of land carbon uptake through photosynthesis. We make use satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and then use the optimized model to estimate photosynthetic carbon uptake. This provides a new tool that can combine measurements and observations in a systematic way and maximise the use of chlorophyll fluorescence to improve our understanding of the land carbon cycle.
Ulas Im, Jørgen Brandt, Camilla Geels, Kaj Mantzius Hansen, Jesper Heile Christensen, Mikael Skou Andersen, Efisio Solazzo, Ioannis Kioutsioukis, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Ciao-Kai Liang, Uarporn Nopmongcol, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta Garcia Vivanco, Jason West, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, https://doi.org/10.5194/acp-18-5967-2018, 2018
Short summary
Short summary
The impacts of air pollution on human health and their costs in Europe and the United States for the year 2010 ared modeled by a multi-model ensemble. In Europe, the number of premature deaths is calculated to be 414 000, while in the US it is estimated to be 160 000. Health impacts estimated by individual models can vary up to a factor of 3. Results show that the domestic emissions have the largest impact on premature deaths, compared to foreign sources.
Nathan J. Janechek, Kaj M. Hansen, and Charles O. Stanier
Atmos. Chem. Phys., 17, 8357–8370, https://doi.org/10.5194/acp-17-8357-2017, https://doi.org/10.5194/acp-17-8357-2017, 2017
Short summary
Short summary
Gas-phase cyclic volatile methyl siloxanes and their oxidation products, which are likely precursors to secondary organic aerosol, were modeled using an atmospheric transport model over North America. Typical concentrations, spatial patterns, seasonal variability, and vertical profiles were quantified. Urban parent compound concentrations were sensitive to transport factors, while rural parent and oxidized product concentrations were sensitive to large-scale seasonal variability in OH.
Efisio Solazzo, Roberto Bianconi, Christian Hogrefe, Gabriele Curci, Paolo Tuccella, Ummugulsum Alyuz, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Johannes Bieser, Jørgen Brandt, Jesper H. Christensen, Augistin Colette, Xavier Francis, Andrea Fraser, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Ulas Im, Astrid Manders, Uarporn Nopmongcol, Nutthida Kitwiroon, Guido Pirovano, Luca Pozzoli, Marje Prank, Ranjeet S. Sokhi, Alper Unal, Greg Yarwood, and Stefano Galmarini
Atmos. Chem. Phys., 17, 3001–3054, https://doi.org/10.5194/acp-17-3001-2017, https://doi.org/10.5194/acp-17-3001-2017, 2017
Short summary
Short summary
As part of the third phase of AQMEII, this study uses timescale analysis to apportion error to the responsible processes, detect causes of model error, and identify the processes and scales that require dedicated investigations. The analysis tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of model biases for ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature over Europe and North America.
Jeremy D. Silver and Charles S. Zender
Geosci. Model Dev., 10, 413–423, https://doi.org/10.5194/gmd-10-413-2017, https://doi.org/10.5194/gmd-10-413-2017, 2017
Short summary
Short summary
Many modern scientific research projects generate large amounts of data. Storage space is valuable and may be limited; hence compression is vital. We tested different compression methods for large gridded data sets, assessing the space savings and the amount of precision lost. We found a general trade-off between precision and compression, with compression well-predicted by the entropy of the data set. A method introduced here proved to be a competitive archive format for gridded numerical data.
T.-B. Ottosen, K. E. Kakosimos, C. Johansson, O. Hertel, J. Brandt, H. Skov, R. Berkowicz, T. Ellermann, S. S. Jensen, and M. Ketzel
Geosci. Model Dev., 8, 3231–3245, https://doi.org/10.5194/gmd-8-3231-2015, https://doi.org/10.5194/gmd-8-3231-2015, 2015
Short summary
Short summary
Semi-parameterised street canyon models are popular due to their speed and low input requirements. One often-used assumption is that emissions are homogeneously distributed in the entire length and width of the street. It is thus the aim of the present study to analyse the impact of this assumption by implementing an inhomogeneous emission geometry scheme and validating it. The results show an improved performance, however, confounded by challenges in estimating the emissions accurately.
K. M. Hansen, J. H. Christensen, C. Geels, J. D. Silver, and J. Brandt
Atmos. Chem. Phys., 15, 6549–6559, https://doi.org/10.5194/acp-15-6549-2015, https://doi.org/10.5194/acp-15-6549-2015, 2015
A. S. Lansø, J. Bendtsen, J. H. Christensen, L. L. Sørensen, H. Chen, H. A. J. Meijer, and C. Geels
Biogeosciences, 12, 2753–2772, https://doi.org/10.5194/bg-12-2753-2015, https://doi.org/10.5194/bg-12-2753-2015, 2015
Short summary
Short summary
The air-sea CO2 exchange is investigated in the coastal region of the Baltic Sea and Danish inner waters. The impact of short-term variability in atmospheric CO2 on the air-sea CO2 exchange is examined, and it is found that ignoring short-term variability in the atmospheric CO2 creates a significant bias in the CO2 exchange. Atmospheric short-term variability is not always included in studies of the air-sea CO2 exchange, but based on the present study, we recommend it to be so in the future.
Q. T. Nguyen, M. K. Christensen, F. Cozzi, A. Zare, A. M. K. Hansen, K. Kristensen, T. E. Tulinius, H. H. Madsen, J. H. Christensen, J. Brandt, A. Massling, J. K. Nøjgaard, and M. Glasius
Atmos. Chem. Phys., 14, 8961–8981, https://doi.org/10.5194/acp-14-8961-2014, https://doi.org/10.5194/acp-14-8961-2014, 2014
A. M. K. Hansen, K. Kristensen, Q. T. Nguyen, A. Zare, F. Cozzi, J. K. Nøjgaard, H. Skov, J. Brandt, J. H. Christensen, J. Ström, P. Tunved, R. Krejci, and M. Glasius
Atmos. Chem. Phys., 14, 7807–7823, https://doi.org/10.5194/acp-14-7807-2014, https://doi.org/10.5194/acp-14-7807-2014, 2014
D. Simpson, C. Andersson, J.H. Christensen, M. Engardt, C. Geels, A. Nyiri, M. Posch, J. Soares, M. Sofiev, P. Wind, and J. Langner
Atmos. Chem. Phys., 14, 6995–7017, https://doi.org/10.5194/acp-14-6995-2014, https://doi.org/10.5194/acp-14-6995-2014, 2014
A. Zare, J. H. Christensen, A. Gross, P. Irannejad, M. Glasius, and J. Brandt
Atmos. Chem. Phys., 14, 2735–2756, https://doi.org/10.5194/acp-14-2735-2014, https://doi.org/10.5194/acp-14-2735-2014, 2014
J. Brandt, J. D. Silver, J. H. Christensen, M. S. Andersen, J. H. Bønløkke, T. Sigsgaard, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, E. Kaas, and L. M. Frohn
Atmos. Chem. Phys., 13, 7747–7764, https://doi.org/10.5194/acp-13-7747-2013, https://doi.org/10.5194/acp-13-7747-2013, 2013
K. Hansen, L. L. Sørensen, O. Hertel, C. Geels, C. A. Skjøth, B. Jensen, and E. Boegh
Biogeosciences, 10, 4577–4589, https://doi.org/10.5194/bg-10-4577-2013, https://doi.org/10.5194/bg-10-4577-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
G. B. Hedegaard, J. H. Christensen, and J. Brandt
Atmos. Chem. Phys., 13, 3569–3585, https://doi.org/10.5194/acp-13-3569-2013, https://doi.org/10.5194/acp-13-3569-2013, 2013
C. A. Skjøth and C. Geels
Atmos. Chem. Phys., 13, 117–128, https://doi.org/10.5194/acp-13-117-2013, https://doi.org/10.5194/acp-13-117-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
The potential of drone observations to improve air quality predictions by 4D-Var
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Opinion: Challenges and needs of tropospheric chemical mechanism development
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Tropospheric ozone precursors: global and regional distributions, trends, and variability
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Investigating the response of China’s surface ozone concentration to the future changes of multiple factors
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Assessing the relative impacts of satellite ozone and its precursor observations to improve global tropospheric ozone analysis using multiple chemical reanalysis systems
Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Air pollution satellite-based CO2 emission inversion: system evaluation, sensitivity analysis, and future perspective
Anthropogenic emission controls reduce summertime ozone-temperature sensitivity in the United States
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Why did ozone concentrations remain high during Shanghai's static management? A statistical and radical-chemistry perspective
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: Yearly trends and the importance of changes in the Urban Heat Island effect
Revising VOC emissions speciation improves the simulation of global background ethane and propane
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx across the Los Angeles Basin
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Insights on ozone pollution control in urban areas by decoupling meteorological factors based on machine learning
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025, https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Short summary
In this paper, we test new implementations of our inverse modeling tool to estimate the weekly and regional CO2 emissions from fossil fuels in Europe. We use synthetic atmospheric observations of CO2 and radiocarbon (14CO2) to trace emissions to their sources, while separating the natural and fossil CO2. Our tool accurately estimates fossil CO2 emissions in densely monitored regions like western/central Europe. This approach aids in developing strategies for reducing CO2 emissions.
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025, https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Short summary
Observation-based estimates of contributions to maximum ozone (O3) concentrations show that background O3 can exceed the air quality standard of 70 ppb in the southwestern US, precluding standard attainment. Over the past 4 decades, US anthropogenic O3 has decreased by a factor of ~ 6.3, while wildfire contributions have increased, so that the background now dominates maximum concentrations, even in Los Angeles, and the occurrence of maximum O3 has shifted from the eastern to the western US.
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025, https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Short summary
This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O3, NO3, and O3P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed.
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024, https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2713, https://doi.org/10.5194/egusphere-2024-2713, 2024
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till 2060s) in China following an IPCC scenario. We further evaluate and separate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors, and dominate the declining ozone level. The outcomes highlight the importance of human actions even with a climate penalty on air quality in the future.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
EGUsphere, https://doi.org/10.5194/egusphere-2024-2912, https://doi.org/10.5194/egusphere-2024-2912, 2024
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimise these natural emissions over Africa in 2019. Our approach led to an increase in natural emissions that is supported by independent data showing that current estimates are underestimated.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2426, https://doi.org/10.5194/egusphere-2024-2426, 2024
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursors measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows for evaluating dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying the magnitudes among the systems.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2022, https://doi.org/10.5194/egusphere-2024-2022, 2024
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, significant changes in radiative forcing, and could significantly elevate N2O.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Hui Li, Jiaxin Qiu, and Bo Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1986, https://doi.org/10.5194/egusphere-2024-1986, 2024
Short summary
Short summary
We conduct a sensitivity analysis on various factors including prior, model resolution, satellite constraint, and inversion system configuration to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. Our analysis first reveals the robustness of emissions estimated by this air pollution satellite sensor-based CO2 emission inversion system, with relative change between tests and Base inversion below 4.0 % for national annual NOx and CO2 emissions.
Shuai Li, Xiao Lu, and Haolin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1889, https://doi.org/10.5194/egusphere-2024-1889, 2024
Short summary
Short summary
We report that the summertime ozone-temperature sensitivity decreased by 50 % from 3.0 ppbv/K in 1990 to 1.5 ppb/K in 2021 in the US. GEOS-Chem simulations show that anthropogenic NOx emission reduction is the dominant driver of the ozone-temperature sensitivity decline, through influencing both the temperature-direct and temperature-indirect processes. Reduced ozone-temperature sensitivity has decreased the ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
EGUsphere, https://doi.org/10.5194/egusphere-2024-1961, https://doi.org/10.5194/egusphere-2024-1961, 2024
Short summary
Short summary
The introduction of battery electric vehicles (BEV) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately decreasing the urban heat island effect (UHI). This study revealed the impact of introducing BEVs on the decrease in UHI and the effects of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024, https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
Short summary
This paper presents detailed plume simulations of nitrogen oxides and carbon dioxide that are emitted from four large industrial facilities world-wide. Results from the high-resolution simulations that include atmospheric chemistry are compared to nitrogen dioxide observations from satellites. We find good performance of the model and show that common assumptions that are used in simplified models need revision. This work is important for the monitoring of emissions using satellite data.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1899, https://doi.org/10.5194/egusphere-2024-1899, 2024
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking are important sources that impact air quality. This study used a model to evaluate how these emissions impact ozone in the Los Angeles Basin, and quantifies the impact of gaseous cooking emissions for the first time. Accurate representation of these and other man-made sources in inventories is crucial to inform effective air quality policies.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1576, https://doi.org/10.5194/egusphere-2024-1576, 2024
Short summary
Short summary
The chemical reactions of ozone (O3) formation are related to meteorology and local emissions. Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O3 and its precursors. Variations in the sensitivity of O3 formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O3 formation.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Cited articles
Abbey, D. E., Ostro, B. E., Petersen, F., Burchette, R. J.: Chronic respiratory symptoms associated with estimated log-term ambient concentrations of fine particulates les than 2.5 micron in aerodynamic diameter (PM2.5) and other air pollutants, J. Exp. Anal. Environ. Epidemiol., 5, 137–159, 1995.
Abbey, D. E., Nishino, N., Mcdonnell, W. F., Burchette, R. J., Knutsen, S. F., Lawrence Beeson, W., and Yang, J. X.: Long-term inhalable particles and other air pollutants related to mortality in nonsmokers, Am. J. Respir. Crit. Care Med., 159, 373–382, 1999.
Alberini, A., Hunt, A., and Markandya, A.: Willingness to pay to reduce mortality risks: evidence from a three-country contingent valuation study, Environ. Res. Econom., 33, 251–264, 2006.
Alcamo, J., Shaw, R., and Hordijk, L. (eds.): The RAINS Model of Acidification. Science and Strategies in Europe, Kluwer Academic Publishers, Dordrecht, the Netherlands, 402 pp., 1990.
Amann, M., Bertok, I., Cabala, R., Cofala, J., Heyes, C., Gyarfas, F., Klimont, Z., Schöpp, W., and Wagner, F.: A final set of scenarios for the Clean Air For Europe (CAFE) programme, June 2005, International Institute for Applied Systems Analysis (IIASA) CAFE Scenario Analysis Report No. 6. http://www.iiasa.ac.at/rains/CAFE_files/CAFE-D3.pdf (last access: 2 March 2013), 2005.
Andersen, M. S., Frohn, L. M., Nielsen, J. S., Nielsen, M., Jensen, J. B., Jensen, S. S., Christensen, J., and Brandt, J.: EVA – a non-linear, Eulerian approach for assessment of health-cost externalities of air pollution. In Biennial Conference of the International Society for Ecological Economics, New Delhi, India, December 2006.
Andersen, M. S., Frohn, L. M., Brandt, J., Jensen, S. S.: External effects from power production and the treatment of wind energy (and other renewables) in the Danish energy taxation system. In: Critical Issues in Environmental Taxation: International and Comparative Perspectives Volume IV edited by: Deketelaere, K., Milne, J. E., Kreiser, L. A., and Ashiabor, H. Oxford University Press, 319–336, 2007a.
Andersen, Z. J., P. Wahlin, O. Raaschou-Nielsen, T. Scheike and S. Loft: Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J. Expos. Sci. Environ. Epidemiol., 17, 625–636, 2007b.
Andersen, M. S., Frohn, L. M., Nielsen, J. S., Nielsen, M., Jensen, S. S., Christensen, J. H., and Brandt, J.: A Non-linear Eulerian Approach for Assessment of Health-cost Externalities of Air Pollution. Proceedings of the European Association of Environmental and Resource Economists 16th Annual Conference, Gothenburg, Sweden, 25–28 June 2008, 23 pp., 2008.
Andersson, C., Bergström, R., and Johansson, C.: Population exposure and mortality due to regional background PM in Europe – Long-term simulations of source region and shipping contributions. Atmos. Environ., 43, 3614–3620, 2009.
Bastrup-Birk, A., Brandt, J., Zlatev, Z., and Uria, I.: Studying cumulative ozone exposures in Europe during a 7-year period, J. Geophys. Res., 102, 23917–23935, October 27, 1997.
Bell, M. L., Ebisu, K., Peng, R. D., Samet, J. M., and Dominici, F.: Hospital Admissions and Chemical Composition of Fine Particle Air Pollution, Am. J. Respir. Crit. Care Med., 179, 1115–1120, 2009.
Bønløkke, J. H., Sigsgaard, T., Brandt, J., Frohn, L. M., Flachs, E. M., Brønnum-Hansen, H., and0 Siggaard-Andersen, M.-L.: CEEH Scientific Report No. 7a – Description of the CEEH health effect model. Centre for Energy, Environment and Health Report Series, 76 pp., ISSN 1904-7495. http://www.ceeh.dk/CEEH_Reports/Report_7a/CEEH_Report_7a.pdf (last access: 2 July 2013), 2011.
Brandt, J., Mikkelsen, T., Thykier-Nielsen, S., and Zlatev, Z.: Using a combination of two models in tracer simulations, Math. Comput. Model., 23, 99–115, 1996.
Brandt, J., Christensen, J. H., Frohn, L. M., Palmgren, F., Berkowicz, R., and Zlatev, Z.: Operational air pollution forecasts from European to local scale, Atmos. Environ., 35, S91–S98, 2001a.
Brandt, J., Christensen, J. H., Frohn, L. M., and Berkovicz, R.: Operational air pollution forecast from regional scale to urban street scale. Part 1: system description, Phys. Chem. Earth B, 26, 781–786, 2001b.
Brandt, J., Christensen, J. H., and Frohn, L. M.: Operational air pollution forecast from regional scale to urban street scale. Part 2: performance evaluation, Phys. Chem. Earth B, 26, 825–830, 2001c.
Brandt, J., Christensen, J. H., Frohn, L. M., and Berkowicz, R.: Air pollution forecasting from regional to urban street scale – implementation and validation for two cities in Denmark, Phys. Chem. Earth, 28, 335–344, 2003.
Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., and Skjøth, C. A.: Assessment of Health-Cost Externalities of Air Pollution at the National Level using the EVA Model System. Proceedings from the International Conference on Energy, Environment and Health – Optimisation of Future Energy Systems 2010, 31 May–2 June 2010, Carlsberg Academy, Valby, in: CEEH Scientific Report No. 9, 109–115, 2010.
Brandt, J., Silver, J. D., Frohn, L. M., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Skjøth, C. A., Villadsen, H., Zare, A., and Christensen, J. H.: An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport, Atmos. Environ., 53, 156–176, https://doi.org/10.1016/j.atmosenv.2012.01.011, 2012.
Brandt, J., J. D. Silver, J. H. Christensen, M. S. Andersen, J. Bønløkke, T. Sigsgaard, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, E. Kaas and L. M. Frohn: Assessment of past, present and future health-cost Externalities of air pollution in Europe and the contribution from international ship traffic using the EVA Model System, Atmos. Chem. Phys., accepted, 2013.
Brink, C., van Grinsven, H., Jacobsen, B. H., Rabl, A., Gren, I.-M., Holland, M., Klimont, Z., Hicks, K., Brouwer, R., Willems, J., Termansen, M., Velthof, G., Alkemade, R., van Oorschot, M., and Webb, J.: Costs and benefits of nitrogen in the environment. In: The European Nitrogen Assessment, edited: Sutton, M. A., Howard, C. M., Erismann, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B., Cambridge University Press, 612 pp., 2011.
Christensen, J. H.: The Danish Eulerian Hemispheric Model – a three-dimensional air pollution model used for the Arctic, Atmos. Environ., 31, 4169–4191, 1997.
Christensen, J. H., Brandt, J., Frohn, L. M., and Skov, H.: Modelling of Mercury in the Arctic with the Danish Eulerian Hemispheric Model, Atmos. Chem. Phys., 4, 2251–2257, https://doi.org/10.5194/acp-4-2251-2004, 2004.
Corbett J. J. and Fischbeck, P. S.: Emissions from ships, Science, 278, 823–824, 1997.
DEFRA, 2007: An Economic Analysis to Inform the Air Quality Strategy. Updated Third Report of the Interdepartmental Group on Costs and Benefits. Department of Environment, Food and Rural Affairs in partnership with the Scottish Executive, Welsh Assembly Government and Department of Environment Northern Ireland, 25 pp., 2007.
Dockery, D. W., Arden Pope, C., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr., B. G., and Speizer, F. E.: An association between air pollution and mortality in six U.S. cities, N. Engl. J. Med., 329, 1753–1759, 1993.
Eagan, T. M. L., Bakke, P. S., Eide, G. E., and Gulsvik, A.: Incidence of asthma and respiratory symptoms by sex, age and smoking in a community study, Eur. Respir. J., 19, 599–605, 2002.
Enstrom, J.: Fine particulate air pollution and total mortality among elderly Californians, 1973–2002, Inhal. Toxicol., 17, 803–816, 2005.
EU 2004: Modelling and assessment of the health impact of particulate matter and ozone. Economic commission for Europe, Executive body for the convention on long-range transboundary air pollution, Working group on effects, twenty-third session, Geneva, 1–3 September 2004.
EU 2008: Directive 2008/50/EC of the European Parliament on ambient air quality and cleaner air for Europe, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32008L0050:EN:NOT (last acces: 2 March 2013), 21 May 2008.
European Commission: Recommended interim values for the value of preventing a fatality. DG Environment Cost Benefit analysis, Bruxelles: http://ec.europa.eu/environment/enveco/others/pdf/recommended_interim_values.pdf, (last access: 10 July 2012), 2001.
ExternE: National Implementation, Germany, Contract JOS3-CT95-0010, Contract JOU2-CT-0264, Final Report prepared by IER, http://www.regie-energie.qc.ca/audiences/3526-04/MemoiresParticip3526/Memoire_CCVK_75_ExternE_Germany.pdf (last access date: 2 March 2013), November 1997.
ExternE, DGXII (JOULE Programme). Externalities of Energy, External project, Report Number 7, Methodology, updated 1998, edited by: Holland, M. R. Foster. D., www.externe.info (last access: 2 March 2013), 1998.
ExternE: ExternE – Externalities of Energy: Vol. 7 Methodology 1998 update, European Commission, Brussels, www.externe.info (last access: 2 March 2013), 1999.
ExternE, : Externalities of Energy Methodology 2005 update, European Commission, Directorate-General for Research Sustainable Energy Systems. Brussels, www.externe.info (last access: 2 March 2013), 2005.
Filleul, L., Rondeau, V., Vandentorren, S., Le Moual, N., Cantagrel, A., Annesi-Maesano, I., Charpin, D., Declercq, C., Neukirch, F., Paris, C., Vervloet, D., Brochard, P., Tessier, J.-F., Kauffmann, F., and Baldi, I.: Twenty five year mortality and air pollution: results from the French PAARC survey, Occup. Environ. Med., 62, 453–460, 2005.
Franklin, M., Zeka, A., and Schwartz, J.: Associations between PM2.5 and all-cause and specific-cause mortality in 27 US communities, J. Expo. Sci. Environ. Epidemiol., 17, 279–287, 2007.
Franklin, M., Koutrakis, P., and Schwartz, P.: The role of particle composition on the association between PM2.5 and mortality, Epidemiology, 19, 680–689, 2008.
Friedrich, R. and Bickel, P.: Environmental External Costs of Transport, Springer, München, 326 pp., 2001.
Frohn, L. M., Christensen, J. H., Brandt, J., and Hertel, O.: Development of a high resolution nested air pollution model for studying air pollution in Denmark, Phys. Chem. Earth, 26, 769–774, 2001.
Frohn, L. M., Christensen, J. H., and Brandt, J.: Development of a high resolution nested air pollution model – the numerical approach, J. Comput. Phys., 179, 68–94, 2002.
Frohn, L. M., Brandt, J., Hertel, O., Christensen, J. H., Geels, C., Andersen, M. S., Nielsen, J. S., Frydendall, J., Hvidberg, M., Jensen, S. S., Petersen, J., and Madsen, P. V.: Assessment of air pollution related damages on human health – and the subsequent costs. Proceedings from the 3rd GLOREAM/ EURASAP Workshop, Modern developments in modelling and chemical data analysis, the Netherlands, September 2005, 8 pp., 2006.
Frohn, L. M., Andersen, M. S., Geels, C., Brandt, J., Christensen, J. H., Hansen, K. M., Nielsen, J. S., Hertel, O., Skjøth, C. A., and Madsen, P. V.: EVA – An integrated model system for assessing external costs related to air pollution emissions. A contribution to ACCENT T&TP, Proceedings from the 2d ACCENT Symposium, 10 pp., 2007.
Geels, C., Christensen, J. H., Frohn, L. M., and Brandt, J.: Simulating spatiotemporal variations of atmospheric CO2 using a nested hemispheric model, Phys. Chem. Earth, Parts A/B/C, 27, 1495–1505, 2002.
Geels, C., Doney, S., Dargaville, R., Brandt, J., and Christensen, J. H., 2004: Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents – a regional model study, Tellus, 56B, 35–50, 2004.
Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A. T., Dargaville, R., Aalto, T., Brandt, J., Christensen, J. H., Frohn, L. M., Haszpra, L., Karstens, U., Rödenbeck, C., Ramonet, M., Carboni, G., and Santaguida, R.: Comparing atmospheric transport models for future regional inversions over Europe – Part 1: mapping the atmospheric CO2 signals, Atmos. Chem. Phys., 7, 3461–3479, https://doi.org/10.5194/acp-7-3461-2007, 2007.
Graedel, T. F., Bates, T. S., Bouman, A. F., Cunnold, D., Dignon, J., Fung, I., Jacob, D. J., Lamb, B. K., Logan, J. A., Marland, G., Middleton, P., Pacyna, J. M., Placet, M., and Veldt, C.: A compilation of inventories of emissions to the atmosphere, Global Biogeochem. Cy., 7, 1–26, 1993.
Grell, G. A., Dudhia, J., and Stauffer, D. R.: A description of the fifth-generation Penn State/ NCAR mesoscale model (MM5). NCAR Technical Note NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 1994.
Griffiths, S. J.: Implications of individual particulate matter component toxicity for population exposure, Air Qual Atmos Health, 4, 189–197, https://doi.org/10.1007/s11869-010-0077-4, 2011.
Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global-model of natural volatile organic-compound emissions, J. Geophys. Res.-Atmos., 100, 8873–8892, 1995.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hänninen, O., Knol, A. (eds.), Jantunen, M., Kollanus, V., Leino, O., Happonen, E., Lim, T.-A., Conrad, A., Rappolder, M., Carrer, P., Fanetti, A.-C., Kim, R., Prüss-Üstün, A., Buekers, J., Torfs, R., Iavarone, I., Comba, P., Classen, T., Hornberg, C., and Mekel, O.: European perspectives on Environmental Burden of Disease: Estimates for nine stressors in six countries. THL Reports 1/2011, Helsinki, Finland, 86 pp. and 2 appendices. ISBN 978-952-245-413-3, http://en.opasnet.org/w/Ebode (last access: 4 January 2013), 2011.
Hansen, K. M., Christensen, J. H., Brandt, J., Frohn, L. M., and Geels, C.: Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP, Atmos. Chem. Phys., 4, 1125–1137, https://doi.org/10.5194/acp-4-1125-2004, 2004.
Hansen, K. M., Christensen, J. H., Brandt, J., Frohn, L. M., Geels, C., Skjøth, C. A., and Li, Y.-F.: Modeling short-term variability of alpha-hexachlorocyclohexane in Northern Hemispheric air, J. Geophys. Res., 113, D02310, https://doi.org/10.1029/2007JD008492, 2008a.
Hansen, K. M., Halsall, C. J., Christensen, J. H., Brandt, J., Geels, C., Frohn, L. M., and Ambelas Skjøth, C.: The role of the snowpack on the fate of alpha-HCH in an atmospheric chemistry-transport model, Environ. Sci. Technol., 42, 2943–2948, 2008b.
Hedegaard, G. B., Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C., Hansen, K. M., and Stendel, M.: Impacts of climate change on air pollution levels in the Northern Hemisphere with special focus on Europe and the Arctic, Atmos. Chem. Phys., 8, 3337–3367, https://doi.org/10.5194/acp-8-3337-2008, 2008.
Hedegaard, G. B., Christensen, J. H., Geels, C., Gross, A., Hansen K. M., May, W., Zare, A., and Brandt, J.: Modelling the Impacts of Climate Change on Tropospheric Ozone over three Centuries, Atmos. Clim. Sci., 2, 546–561, https://doi.org/10.4236/acs.2012.24050, 2012.
Hedegaard, G. B., Christensen, J. H., and Brandt, J.: The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century, Atmos. Chem. Phys., 13, 3569–3585, https://doi.org/10.5194/acp-13-3569-2013, 2013.
Heyes, C., Schöpp, W., Amann, M., and Unger, S.: A Simplified Model to Predict Long-Term Ozone Concentrations in Europe. Working paper, WP-96-12. IIASA, Laxenburg, Austria, 1996.
Holland, M., Hunt, A., Hurley, F., Navrud, S., and Watkiss, P.: Methodology for the Cost-Benefit Analysis for CAFE: Volume 1: Overview of Methodology, Didcot, UK, AEA Technology Environment, 2005.
Hurley, F., Hunt, A., Cowie, H., Holland, Miller, B., Pye, S., and Watkiss, P.: Development of Methodology for the CBA of the Clean Air For Europe (CAFE) Programme, Volume 2: Health Impact Assessment, Report for European Commission DG Environment, 2005.
Jerrett, M., Burnett, R. T., Ma, R., Arden Pope, C., Krewski, D., Newbold, K. B., Thurston, G., Shi, Y., Finkelstein, N., Calle, E. E., and Thun, M. J.: Spatial analysis of air pollution and mortality in Los Angeles, Epidemiology, 16, 727–736, 2005.
Jones-Lee, M., Hammerton, M., and Philips, P.: The value of safety: results of a national sample survey, Econ. J., 95, 49–72, 1985.
Katsouyanni, K., Touloumi, G., Spix, C., Schwartz, J., Balducci, F., Medina, S., Rossi, G., Wojtyniak, B., Sunyer, J., Bacharova, L., Schouten, J. P., Ponka, A., and Anderson, H. R.: Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Air Pollution and Health: a European Approach, British Med. J., 314, 1658–1663, 1997.
Klaassen, G., Amann, M., Berglund, C., Cofala, J., Höglund-Isaksson, L., Heyes, C., Mechler, R., Tohka, A., Schöpp, W., and Winiwarter, W.: The extension of the RAINS model to greenhouse gases. Technical Report IR-04-015, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2004.
Krewitt, W., Mayerhofer, P., Trukenmüller, A., and Friedrich, R.: Application of the impact pathway analysis in the context of LCA, Int. J. Life Cycle Assess., 3, 86–94, 1998.
Krewski D., Burnett, R. T., Goldberg, M. S., Hoover, K., Siemiatycki, J., Abrahamowicz, M., and White, W. H.: Re-analysis of the Harvard Six-cities study and the American Cancer Society Study of air pollution and mortality, Cambridge, MA, USA, Health Effects Institute, 2000.
Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., Turner, M. C., Arden Pope III, C., Thurston, G., Calle, E. E., and Thun, M. J.: Extended Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality, Health Effects Insitute Research Report, 140, 1–154, 2009.
Krupnick, A., Ostro, B., and Bull, K.: Peer review of the methodology of cost-benefit analysis of the clean air for Europe programme http://www.cafe-cba.org/reports-on-developing-the-cba-framework/ (last access: 2 March 2011), 2005.
Laden, F., J. Schwartz, F. E. Speizer and D. W. Dockery, 2006: Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study, Am. J. Resp. Crit. Care Med., 173, 667–672, 2006.
Liu, S., Krewski, D., Shi, Y., Chen, Y., and Burnett, R. T.: Association between maternal exposure to ambient air pollutants during pregnancy and fetal growth restriction, J. Expo Sci. Environ. Epidemiol. 17, 426–432, 2007.
Logan, J. A.: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models, and development of a gridded climatology for tropospheric ozone, J. Geophys. Res., 104, 115–116, 149, 1999.
Mareckova, K., Wankmueller, R., Anderl, M., Muik, B., Poupa, S., and Wieser, M.: Inventory review 2008: Emission data reported under the LRTAP convention and NEC directive. status of gridded data. Technical report, EMEP Centre on Emission Inventories and Projections, www.ceip.at/fileadmin/inhalte/emep/pdf/Inventory_Review_2008.pdf (last access: 2 March 2013), 2008.
Maynard, D., Coull, B. A., Gryparis, A., and Schwartz, J.: Mortality risk associated with short-term exposure to traffic particles and sulfates, Environ. Health Perspect., 115, 751–755, 2007.
McCubbin, D. R., Apelberg, B. J., Roe, S., and Divita, F.: Livestock Ammonia Management and Particulate-Related Health Benefits, Environ. Sci. Technol., 36, 1141–1146, 2002.
NEEDS: Deliverable 3.7 – RS1b/WP3 "A set of concentration-response functions" 167 pp., NEEDS, New Energy Externalities Developments for Sustainability, http://www.needs-project.org/RS1b/NEEDS_Rs1b_ D3.7.pdf (last access: 2 March 2013), 2007.
Nielsen, J. S., Chilton, S., Jones-Lee, M., Metcalf, H.: How would you like your gain in life expectancy to be provided? An experimental approach, J. Risk Uncert., 41, 195–218, 2010.
OECD: Cost-benefit analysis and the environment: recent developments, Paris. ISBN 92-64-01004-1 – Copyright: OECD 2006, 27 pp., http://www.oecd.org/dataoecd/37/53/36190261.pdf (last access date: 2 March 2013), 2006.
Olesen, H. R., Winther, M., Ellermann, T., Christensen, J., and Plejdrup, M.: Ship emissions and air pollution in Denmark: Present situation and future scenarios, Environmental Project 1306, Danish Environmental Protection Agency, 2009.
Olivier, J. G. J. and Berdowski, J. J. M.: Global emissions sources and sinks. In J. Berdowski, R. Guicherit, and B. J. Heij, editors, The Climate System, 33–78, A. A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands, 2001.
Ostro, B., Feng, W. Y., Broadwin, R., Green, S., and Lipsett, M.: The effects of components of fine particulate air pollution on mortality in California: results from CALFINE, Environ. Health Perspect., 115, 13–19, 2007.
Ostro, B., Lipsett, M., Reynolds, P., Goldberg, D., Hertz, A., Garcia, C., Henderson, K. D., and Bernstein, L.: Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study. Environ. Health Perspect., 118, 363–369, 2010.
Pearson, J. F., C. Bachireddy, S. Shyamprasad, A. B. Goldfine, and J. S. Brownstein: Association between fine particulate matter and diabetes prevalence in the U.S., Diabetes Care, 33, 2196–2201, 2010.
Pelucchi, C., Negri, E., Gallus, S., Boffetta, P., Tramacere, I., and Vecchia, C. L.: Long-term particulate matter exposure and mortality: a review of European epidemiological studies, BMC Public Health, 9, 453, https://doi.org/10.1186/1471-2458-9-453, 2009.
Peng, R. D., Bell, M. L., Geyh, A. S., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F.: Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution, Environ. Health Perspect., 117, 957–963, 2009.
Pfister, G. G., Emmons, L. K., Hess, P. G., Lamarque, J.-F., Orlando, J. J., Walters, S., Guenther, A., Palmer, P. I., and Lawrence, P. J.: Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4, J. Geophys. Res., 113, D05308, https://doi.org/10.1029/2007JD008948, 2008.
Pizzol, M., Thomsen, M., Frohn, L., and Andersen, M. S.: External costs of atmospheric Pb emissions: valuation of neutrotoxic impacts due to inhalation, Environ. Health, 9, 1–9, 2010.
Pope III, C. A., Thun, M. J., Namboodiri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E., Heath Jr., C. W.: Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults, Am. J. Respir. Crit. Care Med., 151, 669–674, 1995.
Pope, C. A.: Particulate matter-mortality exposure-response relations and threshold, Am. J. Epidemiol., 152, 407–412, 2000.
Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.: Lung cancer, cardiopulmonary mortality and longterm exposure to fine particulate air pollution, J. Am Med. Assoc., 287, 1132–1141, 2002.
Pope, C. A., Ezzati, M., and Dockery, D. W.: Fine-particulate air pollution and life expectancy in the United States, New England J. Med., 360, 376–386, 2009.
Raaschou-Nielsen, O., Palmgren, F., Jensen, S. S., Wåhlin, P., Berkowicz, R., Hertel, O., Vrang, M.-L., and Loft, S. H.: Helbredseffekter af partikulær luftforurening i Danmark – et forsøg på kvantificering, Ugeskrift for Læger, 164, 3959–3963, 2002.
Rohr, A. C. and Wyzga, R. E.: Attributing health effects to individual particulate matter constituents, Atmos. Environ., 62, 130–152, 2012.
Schlesinger, R. B., Kunzli, N., Hidy, G. M., Gotschi, T., and Jerrett, M.: The health relevance of ambient particulate matter characteristics: Coherence of toxicological and epidemiological inferences, Inhal. Toxicol., 18, 95–125, 2006.
Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J.,, Held, and Pereira, J. M.: Global emissions from wildland fires from 1960 to 2000, Global Biogeochem. Cy., 22, GB2002, https://doi.org/10.1029/2007GB003031, April 2008, 2008.
Schwartz, J., Alexeeff, S. E., Mordukhovich, I., Gryparis, A., Vokonas, P., Suh, H., and Coull, B. A.: Association between long-term exposure to traffic particles and blood pressure in the Veterans Administration Normative Aging Study, Occup. Environ. Med., 69, 422–427 https://doi.org/10.1136/oemed-2011-100268, 2012.
Šikoparija, B., Smith, M., Skjøth, C. Ambelas., Radišić, P., Milkovska, S., Šimić, S., and Brandt, J.: The Pannonian Plain as a source of Ambrosia pollen in the Balkans, Int. J. Biometeorol., 53, 263–272, https://doi.org/10.1007/s00484-009-0212-9, 2009.
Solazzo, E., Bianconi, R., Vautard, R., Wyat Appel, K., Moran, M. D., Hogrefe, C., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel, C., Coll, I., Denier van der Gon, H., Ferreira, J., Forkel, R., Francis, X. V., Grell, G., Grossi, P., Hansen, A. B., Jericevi, A., Kraljevi, L., Miranda, A. I., Nopmongcol, U., G. Pirovano, M. Prank, A. Riccio, K. N. Sartelet, M. Schaap, J. D. Silver, R. S. Sokhi, J. Vira, J. Werhahn, R. Wolkem, G. Yarwood, J. Zhang, S. Trivikrama Rao, S. Galmarini, 2012a: Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII, Atmos. Environ., 53, June 2012, 60–74, https://doi.org/10.1016/j.atmosenv.2012.01.003, 2012a.
Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Appel, K. W., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel, C., Coll, I., Ferreira, J., Forkel, R., Francis, X. V., Grell, G., Grossi, P., Hansen, A., Miranda, A. I., Moran, M. D., Nopmongco, U., Parnk, M., Sartelet, K. N., Schaap, M., D. Silver, J., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R., Yarwood, G., Zhang, J., Rao, S. T., Galmarin, S.: Operational model evaluation for particulate matter in Europe and North America in the context of the AQMEII project, Atmos. Environ., 53, June 2012, 75–92 https://doi.org/10.1016/j.atmosenv.2012.02.045, 2012b.
Solazzo, E., Bianconi, R., Pirovano, G., Moran, M. D., Vautard, R., Hogrefe, C., Appel, K. W., Matthias, V., Grossi, P., Bessagnet, B., Brandt, J., Chemel, C., Christensen, J. H., Forkel, R., Francis, X. V., Hansen, A. B., McKeen, S., Nopmongcol, U., Prank, M., Sartelet, K. N., Segers, A., Silver, J. D., Yarwood, G., Werhahn, J., Zhang, J., Rao, S. T., and Galmarini, S.: Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants, Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, 2013.
Sudo, K. and Akimoto, H.: Global source attribution of trophospheric ozone: long-range transport from various source regions, J.Geophys. Res., 112, D12302, https://doi.org/10.1029/2006JD007992, 2007.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B. (eds): The European Nitrogen Assessment, Cambridge Univ. Press, Cambridge, 664 pp., 2011.
Vautard, R., Schaap, M., van Loon, M., Bergström, R., Bessagnet, B., Brandt, J., Builtjes, P. J. H., Christensen, J. H., Cuvelier, C., Foltescu, V., Graff, A., Jonson, J. E., Kerschbaumer, A., Krol, M., Langner, J., Roberts, P., Rouïl, L., Stern, R., Tarrasón, L., Thunis, P., Vignati, E., White, L., and Wind, P.: "Skill and uncertainty of a regional air quality model ensemble, Atmos. Environ., 43, 4822–4832. https://doi.org/10.1016/j.atmosenv.2008.09.083, 2009.
Watkiss, P., Pye, S., and Holland, M.: CAFE CBA: Baseline Analysis 2000 to 2020. Service Contract for Carrying out Cost-Benefit Analysis of Air Quality Related Issues, in particular in the clean Air for Europe (CAFE) Programme, April 2005, http://www.cafe-cba.org/assets/baseline_analysis_2000-2020_05-05.pdf (last access: 20 November 2012), 2005.
WHO, 2006: Health risks of particulate matter from long-range transboundary air pollution, Joint WHO/Convention Task Force on the Health Aspects of Air Pollution", European centre for Environment and Health, Bonn Office, pp 113. http://www.euro.who.int/__data/assets/pdf_file/0006/78657/E88189.pdf (last access: 20 November 2012).
Yap, C., Beverland, I. J., Heal, M. R., Cohen, G. R., Robertson, C., Henderson, D. E. J., Ferguson, N. S., Hart, C., L., Morris, G., and Agius, R. M.: Association between long-term exposure to air pollution and specific causes of mortality in Scotland, Occup. Environ. Med., 69, 916–924, https://doi.org/10.1136/oemed-2011-100600, 2012.
Zanobetti, A., Franklin, M., Koutrakis, P., and Schwartz, J.: Fine particulate air pollution and its components in association with cause-specific emergency admissions, Environ. Health, 8, 1–12, https://doi.org/10.1186/1476-069X-8-58, 2009.
Zare, A., Christensen, J. H., Irannejad, P., and Brandt, J.: Evaluation of two isoprene emission models for use in a long-range air pollution model, Atmos. Chem. Phys., 12, 7399–7412, https://doi.org/10.5194/acp-12-7399-2012, 2012.
Zare, A., Christensen, J. H., Gross, A., Irannejad, P., Glasius, M., and Brandt, J.: Quantifying the contributions of natural emissions to ozone and total fine PM concentrations in the Northern Hemisphere, Atmos. Chem. Phys. Discuss., 13, 16775–16830, https://doi.org/10.5194/acpd-13-16775-2013, 2013.
Altmetrics
Final-revised paper
Preprint