Conrad, R. and Seiler, W.: Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res., 85(C10), 5493–5498, 1980.
Conrad, R. and Seiler, W.: Influence of temperature, moisture, and organic carbon on the flux of \chem{H^2} and CO between soil and atmosphere: field studies in subtropical regions, J. Geophys. Res., 90, 5699–5709, 1985.
DeMore, W. B., Sander, S. P., Golde, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modelling, evaluation number 11, Technical report, JPL Publication 94-26, Jet Propulsion Laboratory, Pasadena, 1994.
Dethof, A., O'Neill, A., and Slingo, J.: Quantification of the isentropic mass transport across the dynamical tropopause, J. Geophys. Res., 105(D10), 12279–12293, https://doi.org/10.1029/2000JD900127, 2000.
Ehhalt, D. H.: Gas phase chemistry of the troposphere, in global aspects of atmospheric chemistry, in: Topics Phys. Chem., Vol. 6, edited by: Zellner, R., Springer-Verlag, New York, 21–109, 1999.
Ehhalt, D. H. and Rohrer, F.: The tropospheric cycle of H
2: a critical review, Tellus B, 61(3), 500, https://doi.org/10.1111/j.1600–0889.2009.00416.x, 2009.
Feck, T., Groo{ß}, J.-U., and Riese, M.: Sensitivity of Arctic ozone loss to stratospheric H
2O, Geophys. Res. Lett., 35, L01803, https://doi.org/10.1029/2007GL031334, 2008.
Feilberg, K. L., Johnson, M. S., and Nielsen, C. J.: Relative reaction rates of HCHO, HCDO, DCDO, \chem{H^{13}CHO}, and \chem{HCH^{18}O} with OH, Cl, Br, and NO
3 radicals, J. Phys. Chem. A, 108, 7393–7398, 2004.
Feilberg, K. L., D'Anna, B., Johnson, M. S., and Nielsen, C. J.: Relative tropospheric photolysis rates of HCHO, \chem{H^{13}CHO}, \chem{HCH^{18}O}, and DCDO measured at the european photoreactor facility (EUPHORE), J. Phys. Chem. A, 109, 8314–8319, 2005.
Feilberg, K. L., Johnson, M. S., Bacak, A., Röckmann, T., and Nielsen, C. J.: Relative tropospheric photolysis rates of HCHO and HCDO measured at the European photoreactor facility, J. Phys. Chem. A, 111, 9034–9036, 2007a.
Feilberg, K. L., D'Anna, B., Johnson, M. S., and Nielsen, C. J.: Additions and Corrections: Relative tropospheric photolysis rates of HCHO, \chem{H^{13}CHO}, \chem{HCH^{18}O}, and DCDO measured at the european photoreactor facility (EUPHORE), J. Phys. Chem. A, 111(5), p. 992, 2007b.
Ganzeveld, L. and Lelieveld, J.: Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases, J. Geophys. Res., 100(D10), 20999–21012, 1995.
Ganzeveld, L., Lelieveld, J., and Roelofs, G.-J.: A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model, J. Geophys Res., 105(D5), 5679–5694, https://doi.org/10.1029/97JD03077, 1998.
Garland, J. A.: The dry deposition of sulphur dioxide to land and water surfaces, P. R. Soc. London, A354, 245–268, 1977.
Gerst, S. and Quay, P.: The deuterium content of atmospheric molecular hydrogen: method and initial measurements, J. Geophys. Res., 105, 26433–26445, 2000.
Gerst, S. and Quay, P.: Deuterium component of the global molecular hydrogen cycle, J. Geophys. Res., 106, 5021–5031, 2001.
Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C.: Development and testing of the CBM}-4 for urban and regional modelling, Technical Report Rep. {EPA-600/3-88-012, US Environ. Prot. Agency, Research Triangle Park, NC, 1988.
Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C.: A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94(12), 12925–12956, 1989.
Hertel, O., Berkowicz, R., Christensen, J., and Hov, O.: Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmos. Environ., 27A, 2591–2611, 1993.
Hicks, B. B., Hosker, R. P., Myers, T. P., and Womack, J. D.: Dry deposition measurement techniques, I, Design and tests of a prototype meteorological and chemical system for determining dry deposition, Atmos. Environ., 25, 2345–2359, 1991.
Hintsa, E. J., Boering, K. A., Weinstock, E. M., Anderson, J. G., Gary, B. L., Pfister, L., Daube, B. C., Wofsy, S. C., Loewenstein, M., Podolske, J. R., Margitan, J. J., and Bui, T. P.: Troposphere-to-stratosphere transport in the lowermost stratosphere from measurements of H
2O, CO
2, N
2O and O
3, Geophys. Res. Lett., 25(14), 2655–2658, https://doi.org/10.1029/98GL01797, 1998.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.: Chapt. 4: Atmospheric chemistry and greenhouse gases, in: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnso, C. A., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2001.
Jacobson, M. Z., Colella, W. G., and Golden, D. M.: Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles, Science, 308(5730), 1901–1905, https://doi.org/10.1126/science.1109157, 2005.
Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., and Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys., 5, 417–432, https://doi.org/10.5194/acp-5-417-2005, 2005.
Lawrence, M. G., Jöckel, P., and von Kuhlmann, R.: What does the global mean OH concentration tell us?, Atmos. Chem. Phys., 1, 37–49, https://doi.org/10.5194/acp-1-37-2001, 2001.
Lelieveld, J., Bregman, B., Arnold, F., Bürger, V., Crutzen, P. J., Fischer, H., Waibel, A., Siegmund, P., and van Velthoven, P. F. J.: Chemical perturbation of the lowermost stratosphere through exchange with the troposphere, Geophys. Res. Lett., 24(5), 603–606, https://doi.org/10.1029/97GL00255, 1997.
Mar, K. A., McCarthy, M. C., Connell, P., and Boering, K. A.: Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H
2, J. Geophys Res., 112, D19302, https://doi.org/10.1029/2006JD007403, 2007.
McCarthy, M. C., Boering, K. A., Rahn, T., Eiler, J., Rice, A., Tyler, S. C., and Atlas, E.: The hydrogen isotopic composition of water vapor entering the stratosphere inferred from high precision measurements of $\delta \chem{D}−CH
4$ and $\delta \chem{D}−H
2$, J. Geophys Res., 109, D07304, https://doi.org/10.1029/2003JD004003, 2004.
McCaulley, J. A., Kelly, N., Golde, M. F., and Kaufman, F.: Kinetic studies of the reactions of F and OH with \chem{CH_3OH}, J. Phys. Chem., 93, 1014–1018, 1989.
Meirink, J. F., Bergamaschi, P., Frankenberg, C., d'Amelio, M. T. S., Dlugokencky, E. J., Gatti, L. V., Houweling, S., Miller, J. B., Röckmann, T., Villani, M. G., and Krol, M. C.: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: Analysis of SCIAMACHY observations, J. Geophys. Res., 113, D17301, https://doi.org/10.1029/2007JD009740, 2008a.
Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion, Atmos. Chem. Phys., 8, 6341–6353, https://doi.org/10.5194/acp-8-6341-2008, 2008b.
Meyers, T. P., Finkelstein, P., Clarke, J., Ellestad, T. G., and Sims, P. F.: A multilayer model for inferring dry deposition using standard meteorological measurements, J. Geophys. Res., 103(D17), 22645–22661, 1998.
Moortgat, G. K., Klippel, W., Mobius, K. H., Seiler, W., and Warneck, P.: MPIC two dimensional model, Technical Report Rep. FAA-EE-80-47, US {Dept.} of Transp., Washington, DC, USA, 1980.
Nilsson, E. J. K., Johnson, M. S., Taketani, F., Matsumi, Y., Hurley, M. D., and Wallington, T. J.: Atmospheric deuterium fractionation: HCHO and HCDO yields in the CH
2DO + O
2 reaction, Atmos. Chem. Phys., 7, 5873–5881, https://doi.org/10.5194/acp-7-5873-2007, 2007.
Nilsson, E. J. K., Andersen, V. F., Skov, H., and Johnson, M. S.: Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light, Atmos. Chem. Phys., 10, 3455–3462, https://doi.org/10.5194/acp-10-3455-2010, 2010.
Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., Myers, R., and Elkins, J. W.: Molecular hydrogen in the troposphere: Global distribution and budget, J. Geophys. Res., 104, 30427–30444, 1999.
Olivier, J. G. J. and Berdowski, J. J. M.: Global emissions sources and sinks, in: The Climate System, edited by: Berdowski, J., Guicherit, R., and Heij, B. J., A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands, 2001.
Pieterse, G., Krol, M. C., and Röckmann, T.: A consistent molecular hydrogen isotope chemistry scheme based on an independent bond approximation, Atmos. Chem. Phys., 9, 8503–8529, https://doi.org/10.5194/acp-9-8503-2009, 2009.
Pieterse, G., Krol, M. C., Popa, E., Vermeulen, A. T., van den Bulk, P., Jongejan, P., Batenburg, A. M., and Röckmann, T.: Comparing two-way nested TM5 model results for molecular hydrogen with background and continental measurements, in preparation, 2011.
Price, H., Jaeglé, L., Rice, A., Quay, P., Novelli, P. C., and Gammon, R.: Global budget of molecular hydrogen and its deuterium content: constraints from ground station, cruise, and aircraft observations, J. Geophys. Res., 112, D22108, https://doi.org/10.1029/2006JD008152, 2007.
Quay, P., Stutsman, J., Wilbur, D., Snover, A., Dlugokencky, E., and Brown, T.: The isotopic composition of atmospheric methane, Global Biogeochem. Cy., 13, 445–461, 1999.
Rahn, T., Eiler, J. M., Kitchen, N., Fessenden, J. E., and Randerson, J. T.: Concentration and $\delta \chem{D}$ of molecular hydrogen in boreal forests: ecosystem-scale systematics of atmospheric H
2, Geophys. Res. Lett., 29, 1888, https://doi.org/10.1029/2002GL015118, 2002a.
Rahn, T., Kitchen, N., and Eiler, J. M.: \chem{D}/\chem{H} ratios of atmospheric H
2 in urban air: results using new methods for analysis of nano-molar H
2 samples, Geochim. Cosmochim. Ac., 66, 2475–2481, 2002b.
Rahn, T., Eiler, J. M., Boering, K. A., Wennberg, P. O., McCarthy, M. C., Tyler, S., Schauffler, S., Donnelly, S., and Atlas, E.: Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H
2, Nature, 424, 918–921, 2003.
Rahn, T., Randerson, J. T., and Eiler, J.: Variability of Deuterium Fractionation Associated With Soil Uptake of Atmospheric Molecular Hydrogen, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract B11A-1031, 2005.
Ravishankara, A. R.: Kinetics of radical reactions in the atmospheric oxidation of CH
4, Annu. Rev. Phys. Chem., 39, 367–394, 1988.
Rayleigh, L.: On the distillation of binary mixtures, Philos. Mag., 4(23), 521–537, 1902.
Rhee, T. S., Brenninkmeijer, C. A. M., and Röckmann, T.: The overwhelming role of soils in the global atmospheric hydrogen cycle, Atmos. Chem. Phys., 6, 1611–1625, https://doi.org/10.5194/acp-6-1611-2006, 2006.
Rhee, T. S., Brenninkmeijer, C. A. M., and Röckmann, T.: Hydrogen isotope fractionation in the photolysis of formaldehyde, Atmos. Chem. Phys., 8, 1353–1366, https://doi.org/10.5194/acp-8-1353-2008, 2008.
Rice, A., Quay, P., Stutsman, J., Gammon, R., Price, H., and Jaeglé, L.: Meridional distribution of molecular hydrogen and its deuterium content in the atmosphere, J. Geophys. Res., 115, D12306, https://doi.org/10.1029/2009JD012529, 2010.
Roberts, J. M. and Fayer, R. W.: UV absorption cross section of organic nitrates of potential atmospheric importance and estimation of atmospheric lifetimes, Environ. Sci. Technol., 23, 945–951, 1989.
Röckmann, T., Rhee, T. S., and Engel, A.: Heavy hydrogen in the stratosphere, Atmos. Chem. Phys., 3, 2015–2023, https://doi.org/10.5194/acp-3-2015-2003, 2003.
Röckmann, T., Walter, S., Bohn, B., Wegener, R., Spahn, H., Brauers, T., Tillmann, R., Schlosser, E., Koppmann, R., and Rohrer, F.: Isotope effect in the formation of H
2 from H
2CO studied at the atmospheric simulation chamber SAPHIR, Atmos. Chem. Phys., 10, 5343–5357, https://doi.org/10.5194/acp-10-5343-2010, 2010a.
Röckmann, T., Gómez Álvarez, C. X., Walter, S., Veen, C. v., Wollny, A. G., Gunthe, S. S., Helas, G., Pöschl, U., Keppler, F., Greule, M., and Brand, W. A.: The isotopic composition of H
2 from wood burning - dependency on combustion efficiency, moisture content and $\delta \chem{D}$ of local precipitation, J. Geophys. Res., 115, D17308, https://doi.org/10.1029/2009JD013188, 2010b.
Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Keller-Rudek, H., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., R., R. A., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, Technical Report, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, 2006.
Sanderson, M. G., Collins, W. J., Derwent, R. G., and Johnson, C. E.: Simulation of global hydrogen levels using a lagrangian three dimensional model, J. Atmos. Chem., 46, 15–28, 2003.
Schultz, M. and Stein, O.: GEMS (GRG) emissions for 2003 reanalysis simulations, Technical report, MPI-M, Max Planck Institute for Meteorology, Hamburg, Germany, 2006.
Schultz, M. G., Diehl, T., Brasseur, G. P., and Zittel, W.: Air pollution and climate-forcing impacts of a global hydrogen economy, Science, 302, 624–627, 2003.
Seiler, W. and Conrad, R.: Contribution of tropical ecosystems to the global budgets for trace gases, especially CH
4, H
2, CO and N
2O, in: The Geophysiology of Amazonia: Vegetation and Climate Interactions, edited by: Dickerson, R., John Wiley, New York, 33–62, 1987.
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102, 25847–25879, 1997.
Tromp, T. K., Shia, R.-L., Allen, M., Eiler, J. M., and Yung, Y. L.: Potential environmental impact of a hydrogen economy on the stratosphere, Science, 300, 1740–1742, 2003.
van den Broek, M. M. P., van Aalst, M. K., Bregman, A., Krol, M., Lelieveld, J., Toon, G. C., Garcelon, S., Hansford, G. M., Jones, R. L., and Gardiner, T. D.: The impact of model grid zooming on tracer transport in the 1999/2000 Arctic polar vortex, Atmos. Chem. Phys., 3, 1833–1847, https://doi.org/10.5194/acp-3-1833-2003, 2003.
van Noije, T. P. C., Eskes, H. J., van Weele, M., and van Velthoven, P. F. J.: Implications of the enhanced Brewer-Dobson circulation in European {Centre} for Medium-Range {Weather} Forecasts reanalysis ERA-40 for the stratosphere-troposphere exchange of ozone in global chemistry transport models, J. Geophys. Res., 109, D19308, https://doi.org/10.1029/2004JD004586, 2004.
van Noije, T. P. C., Segers, A. J., and van Velthoven, P. F. J.: Time series of the stratosphere-troposphere exchange of ozone simulated with reanalyzed and operational forecast data, J. Geophys. Res., 111, D03301, https://doi.org/10.1029/2005JD006081, 2006.
Vollmer, M. K., Walter, S., Bond, S. W., Soltic, P., and Röckmann, T.: Molecular hydrogen (H
2) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H2, Atmos. Chem. Phys., 10, 5707–5718, https://doi.org/10.5194/acp-10-5707-2010, 2010.
Warneck, P.: Chemistry of the natural atmosphere, Int. Geophys. Ser., Academic, San Diego, Calif., 757 pp., 1988.
Warwick, N. J., Bekki, S., Nisbet, E. G., and Pyle, J. A.: Impact of a hydrogen economy on the stratosphere and troposphere studied in a {2-D} model, Geophys. Res. Lett., 31, L05107, https://doi.org/10.1029/2003GL019224, 2004.
Wille, U., Becker, E., Schindler, R. N., Lancer, I. T., Poulet, G., and LeBras, G.: A discharge flow mass-spectrometric study of the reaction of the NO
3 radical and isoprene, J. Atmos. Chem., 13, 183–193, 1991.
Xiao, X., Prinn, R. G., Simmonds, P. G., Steele, L. P., Novelli, P. C., Huang, J., Langenfelds, R. L., O'Doherty, S., Krummel, P. B., Fraser, P. J., Porter, L. W., Weiss, R. F., Salameh, P., and Wang, R. H. J.: Optimal estimation of the soil uptake of molecular hydrogen from the advanced global atmospheric gases experiments and other measurements, J. Geophys. Res., 112, D07303, https://doi.org/10.1029/2006JD007241, 2007.
Yonemura, S., Kawashima, S., and Tsuruta, H.: Carbon monoxide, hydrogen, and methane uptake by soils in a temperate arable field and a forest, J. Geophys. Res., 105(D11), 14347–14362, 2000.
Yashiro, H., Sudo, K., Yonemura, S., and Takigawa, M.: The impact of soil uptake on the global distribution of molecular hydrogen: chemical transport model simulation, Atmos. Chem. Phys. Discuss., 11, 4059–4103, https://doi.org/10.5194/acpd-11-4059-2011, 2011.