Research article 15 Apr 2011
Research article | 15 Apr 2011
The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ17O(SO42–)
E. D. Sofen et al.
Related subject area
Subject: Isotopes | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine
Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic
Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations
Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor
Photochemical box modelling of volcanic SO2 oxidation: isotopic constraints
Uncertainties of fluxes and 13C ∕ 12C ratios of atmospheric reactive-gas emissions
Using δ13C-CH4 and δD-CH4 to constrain Arctic methane emissions
Air–snow transfer of nitrate on the East Antarctic Plateau – Part 2: An isotopic model for the interpretation of deep ice-core records
Interannual variability of isotopic composition in water vapor over western Africa and its relationship to ENSO
Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2
Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model
Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species
Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate
Sarah A. Strode, James S. Wang, Michael Manyin, Bryan Duncan, Ryan Hossaini, Christoph A. Keller, Sylvia E. Michel, and James W. C. White
Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, https://doi.org/10.5194/acp-20-8405-2020, 2020
Short summary
Short summary
The 13C : 12C isotopic ratio in methane (CH4) provides information about CH4 sources, but loss of CH4 by reaction with OH and chlorine (Cl) also affects this ratio. Tropospheric Cl provides a small and uncertain sink for CH4 but has a large effect on its isotopic ratio. We use the GEOS model with several different Cl fields to test the sensitivity of methane's isotopic composition to tropospheric Cl. Cl affects the global mean, hemispheric gradient, and seasonal cycle of the isotopic ratio.
Antoine Berchet, Isabelle Pison, Patrick M. Crill, Brett Thornton, Philippe Bousquet, Thibaud Thonat, Thomas Hocking, Joël Thanwerdas, Jean-Daniel Paris, and Marielle Saunois
Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, https://doi.org/10.5194/acp-20-3987-2020, 2020
Short summary
Short summary
Methane isotopes in the atmosphere can help us differentiate between emission processes. A large variety of natural and anthropogenic emission types are active in the Arctic and are unsatisfactorily understood and documented up to now. A ship-based campaign was carried out in summer 2014, providing a unique dataset of isotopic measurements in the Arctic Ocean. Using a chemistry-transport model, we link these measurements to circumpolar emissions and retrieve information about their signature.
Becky Alexander, Tomás Sherwen, Christopher D. Holmes, Jenny A. Fisher, Qianjie Chen, Mat J. Evans, and Prasad Kasibhatla
Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, https://doi.org/10.5194/acp-20-3859-2020, 2020
Short summary
Short summary
Nitrogen oxides are important for the formation of tropospheric oxidants and are removed from the atmosphere mainly through the formation of nitrate. We compare observations of the oxygen isotopes of nitrate with a global model to test our understanding of the chemistry nitrate formation. We use the model to quantify nitrate formation pathways in the atmosphere and identify key uncertainties and their relevance for the oxidation capacity of the atmosphere.
Xiahong Feng, Eric S. Posmentier, Leslie J. Sonder, and Naixin Fan
Atmos. Chem. Phys., 19, 4005–4024, https://doi.org/10.5194/acp-19-4005-2019, https://doi.org/10.5194/acp-19-4005-2019, 2019
Short summary
Short summary
We present a 1-D model to simulate H2O isotopologues of vapor and their vertical fluxes in the first kilometer above the sea surface. The model includes two processes not in earlier Craig–Gordon isotope evaporation models: height-dependent diffusion/mixing and ascending/converging air. Calculated isotopic ratios compare well with data from seven cruises. The model explains how sea surface meteorology can affect atmospheric vapor, precipitation isotope ratios, and paleoisotope records.
Tommaso Galeazzo, Slimane Bekki, Erwan Martin, Joël Savarino, and Stephen R. Arnold
Atmos. Chem. Phys., 18, 17909–17931, https://doi.org/10.5194/acp-18-17909-2018, https://doi.org/10.5194/acp-18-17909-2018, 2018
Short summary
Short summary
Volcanic sulfur can have climatic impacts for the planet via sulfate aerosol formation, leading also to pollution events. We provide model constraints on tropospheric volcanic sulfate formation, with implications for its lifetime and impacts on regional air quality. Oxygen isotope investigations from our model suggest that in the poor tropospheric plumes of halogens, the O2/TMI sulfur oxidation pathway might significantly control sulfate production. The produced sulfate has no isotopic anomaly.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017, https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary
Short summary
We revisit the proxies/uncertainties for the 13C/12C ratios of emissions of reactive C into the atmosphere. Our main findings are (i) a factor of 2 less uncertain estimate of tropospheric CO surface sources δ13C, (ii) a confirmed disagreement between the bottom-up and top-down 13CO-inclusive emission estimates, and (iii) a novel estimate of the δ13C signatures of a range of NMHCs/VOCs to be used in modelling studies. Results are based on the EMAC model emission set-up evaluated for 2000.
Nicola J. Warwick, Michelle L. Cain, Rebecca Fisher, James L. France, David Lowry, Sylvia E. Michel, Euan G. Nisbet, Bruce H. Vaughn, James W. C. White, and John A. Pyle
Atmos. Chem. Phys., 16, 14891–14908, https://doi.org/10.5194/acp-16-14891-2016, https://doi.org/10.5194/acp-16-14891-2016, 2016
Short summary
Short summary
Methane is an important greenhouse gas. Methane emissions from Arctic wetlands are poorly quantified and may increase in a warming climate. Using a global atmospheric model and atmospheric observations of methane and its isotopologues, we find that isotopologue data are useful in constraining Arctic wetland emissions. Our results suggest that the seasonal cycle of these emissions may be incorrectly simulated in land process models, with implications for our understanding of future emissions.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
A. Okazaki, Y. Satoh, G. Tremoy, F. Vimeux, R. Scheepmaker, and K. Yoshimura
Atmos. Chem. Phys., 15, 3193–3204, https://doi.org/10.5194/acp-15-3193-2015, https://doi.org/10.5194/acp-15-3193-2015, 2015
H. D. Graven and N. Gruber
Atmos. Chem. Phys., 11, 12339–12349, https://doi.org/10.5194/acp-11-12339-2011, https://doi.org/10.5194/acp-11-12339-2011, 2011
G. Pieterse, M. C. Krol, A. M. Batenburg, L. P. Steele, P. B. Krummel, R. L. Langenfelds, and T. Röckmann
Atmos. Chem. Phys., 11, 7001–7026, https://doi.org/10.5194/acp-11-7001-2011, https://doi.org/10.5194/acp-11-7001-2011, 2011
S. Morin, R. Sander, and J. Savarino
Atmos. Chem. Phys., 11, 3653–3671, https://doi.org/10.5194/acp-11-3653-2011, https://doi.org/10.5194/acp-11-3653-2011, 2011
B. Alexander, M. G. Hastings, D. J. Allman, J. Dachs, J. A. Thornton, and S. A. Kunasek
Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, https://doi.org/10.5194/acp-9-5043-2009, 2009
Cited articles
Aleksic, N., Roy, K., Sistla, G., Dukett, J., Houck, N., and Casson, P.: Analysis of cloud and precipitation chemistry at W}hiteface {M}ountain, {NY, Atmos. Environ., 43, 2709–2716, https://doi.org/10.1016/j.atmosenv.2009.02.053, 2009.
Alexander, B., Savarino, J., Barkov, N. I., Delmas, R. J., and Thiemens, M. H.: Climate driven changes in the oxidation pathways of atmospheric sulfur, Geophys. Res. Lett., 29(14), 1685, https://doi.org/10.1029/2002GL014879, 2002.
Alexander, B., Thiemens, M. H., Farquhar, J., Kaufman, A. J., Savarino, J., and Delmas, R. J.: {E}ast {A}ntarctic ice core sulfur isotope measurements over a complete glacial-interglacial cycle, J. Geophys. Res., 108(D24), 4786, https://doi.org/10.1029/2003JD003513, 2003.
Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004.
Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005.
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget, J. Geophys. Res., 114, D02309, https://doi.org/10.1029/2008JD010486, 2009.
Archibald, A. T., Levine, J. G., Abraham, N. L., Cooke, M. C., Edwards, P. M., Heard, D. E., Jenkin, M. E., Karunaharan, A., Pike, R. C., Monks, P. S., Shallcross, D. E., Telford, P. J., Whalley, L. K., and Pyle, J. A.: Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres, Geophys. Res. Lett., 38, L05804, https://doi.org/10.1029/2010GL046520, 2011.
Barkan, E. and Luz, B.: High precision measurements of \chem{^{17}O/^{16}O} and \chem{^{18}O/^{16}O} ratios in H2O, Rapid Commun. Mass. Sp., 19, 3737–42, https://doi.org/10.1002/rcm.2250, 2005.
Barkan, E. and Luz, B.: Diffusivity fractionations of $\mathrm{H_2^{16}O/H_2^{17}O}$ and $\mathrm{H_2^{16}O/H_2^{18}O}$ in air and their implications for isotope hydrology, Rapid Commun. Mass. Sp., 21, 2999–3005, https://doi.org/10.1002/rcm.3180, 2007.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23073–23095, https://doi.org/10.1029/2001JD000807, 2001.
Bhattacharya, S. K., Pandey, A., and Savarino, J.: Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal, J. Geophys. Res., 113, D03303, https://doi.org/10.1029/2006JD008309, 2008.
Brenninkmeijer, C. A. M., Janssen, C., Kaiser, J., R{ö}ckmann, T., Rhee, T. S., and Assonov, S. S.: Isotope effects in the chemistry of atmospheric trace compounds, Chem. Rev., 103, 5125–5162, https://doi.org/10.1021/cr020644k, 2003.
Chameides, W. L. and Stelson, A. W.: Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt, J. Geophys. Res., 97(D18), 20565–20580, available at: http://www.agu.org/journals/ABS/1992/92JD01923.shtml, 1992.
Chandra, S., Ziemke, J. R., and Martin, R. V.: Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: Comparison with a global model, J. Geophys. Res., 108(D9), 4291, https://doi.org/10.1029/2002JD002912, 2003.
Chin, M. and Jacob, D. J.: Anthropogenic and natural contributions to tropospheric sulfate: A global model analysis, J. Geophys. Res., 101, D13, 18691–18699, https://doi.org/10.1029/96JD01222, 1996.
Cragin, J. H., Giovinetto, M. B., and Gow, A. J.: Baseline acidity of precipitation at the {S}outh {P}ole during the last two millennia, Geophys. Res. Lett., 14(8), 789–792, https://doi.org/10.1029/GL014i008p00789, 1987.
Crutzen, P. J. and Zimmermann, P. H.: The changing photochemistry of the troposphere, Tellus A, 43(4), 136–151, https://doi.org/10.1034/j.1600-0870.1991.00012.x, 1991.
Dentener, F., Williams, J., and Metzger, S.: Aqueous phase reaction of $\mathrm{HNO_4}$: The impact on tropospheric chemistry, J. Atmos. Chem., 41, 109–134, https://doi.org/10.1023/A:1014233910126, 2002.
Dlugokencky, E. J., Lang, P. M., and Masarie, K. A.: Atmospheric methane dry air mole fractions from the NOAA {ESRL} {C}arbon {C}ycle {C}ooperative {G}lobal {A}ir {S}ampling {N}etwork, \urlprefixftp://ftp.cmdl.noaa.gov/ccg/ch4/flask/event/, 2008.
Dominguez, G., Jackson, T., Brothers, L., Barnett, B., Nguyen, B., and Thiemens, M. H.: Discovery and measurement of an isotopically distinct source of sulfate in {E}arth's atmosphere, P. Natl. Acad. Sci. USA, 105(35), 12769–12773, https://doi.org/10.1073/pnas.0805255105, 2008.
Etheridge, D., Steele, L., Francey, R., and Langenfelds, R.: Ice Core, Firn Air and Archived Air Atmospheric Methane Concentration Data, Tech. rep., NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, 2002.
Feingold, G., Frost, G. J., and Ravishankara, A. R.: Role of $NO3$ in sulfate production in wintertime northern latitudes, J. Geophys. Res., 107(D22), 4640, https://doi.org/10.1029/2002JD002288, 2002.
Fogelman, K. D., Walker, D. M., and Margerum, D. W.: Non-metal redox kinetics - Hypochlorite and hypochlorous acid reactions with sulfite, Inorg. Chem., 28, 986–993, https://doi.org/10.1021/ic00305a002, 1989.
Frey, M. M., Bales, R. C., and McConnell, J. R.: Climate sensitivity of the century-scale hydrogen peroxide ({$\mathrm{H_2O_2}$}) record preserved in 23 ice cores from {W}est {A}ntarctica, J. Geophys. Res., 111, D21301, https://doi.org/10.1029/2005JD006816, 2006.
Giglio, L. and Werf, G. V. D.: Global estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys., 5, 11091–11141, https://doi.org/10.5194/acp-6-957-2006, 2006.
Grenfell, J. L., Shindell, D. T., Koch, D., and Rind, D.: Chemistry-climate interactions in the {G}oddard {I}nstitute for {S}pace {S}tudies general circulation model: 2. New insignts into modeling the preindustrial atmosphere, J. Geophys. Res., 106(D24), 33435–33451, https://doi.org/10.1029/2000JD000090, 2001.
Harder, S., Warren, S. G., and Charlson, R. J.: Sulfate in air and snow at the {S}outh {P}ole: Implications for transport and deposition at sites with low snow accumulation, J. Geophys. Res., 105, GB1011, 22825–22832, https://doi.org/10.1029/2000JD900351, 2000.
Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S., Str{ö}m, J., and Stohl, A.: Source identification of short-lived air pollutants in the {A}rctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669–693, https://doi.org/10.5194/acp-10-669-2010, 2010.
Janssen, C.: Intramolecular isotope distribution in heavy ozone ($\mathrm{^{16}O^{18}O^{16}O}$ and $\mathrm{^{16}O^{16}O^{18}O}$), J. Geophys. Res., 110, D08308, https://doi.org/10.1029/2004JD005479, 2005.
Jenkins, K. A. and Bao, H.: Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in B}aton {R}ouge, {LA, USA, Atmos. Environ., 40, 4528–4537, https://doi.org/10.1016/j.atmosenv.2006.04.010, 2006.
Johnston, J. C. and Thiemens, M. H.: The isotopic composition of tropospheric ozone in three environments, J. Geophys. Res., 102(D21), 25395–25404, https://doi.org/10.1029/97JD02075, 1997.
Kaufman, Y. and Tanre, D.: Effect of variations in super-saturation on the formation of cloud condensation nuclei, Nature, 369, 45–48, https://doi.org/10.1038/369045a0, 1994.
Krankowsky, D., Bartecki, F., Klees, G. G., Mauersberger, K., and Schellenbach, K.: Measurement of heavy isotope enrichement in tropospheric ozone, Geophys. Res. Lett., 22(13), 1713–1716, https://doi.org/10.1029/95GL01436, 1995.
Krankowsky, D., Lammerzahl, P., and Mauersberger, K.: Isotopic measurements of stratospheric ozone, Geophys. Res. Lett., 27(17), 2593–2595, https://doi.org/10.1029/2000GL011812, 2000.
Kuhns, H., Green, M., and Etyemezian, V.: {B}ig {B}end {R}egional {A}erosol and {V}isibility {O}bservational ({BRAVO}) Study Emissions Inventory, Tech. rep., Desert Research Institute, Las Vegas, NV, 2003.
Kunasek, S. A., Alexander, B., Steig, E. J., Sofen, E. D., Jackson, T. L., Thiemens, M. H., McConnell, J. R., Gleason, D. J., and Amos, H. M.: Sulfate sources and oxidation chemistry over the past $\sim230$ years from sulfur and oxygen isotopes of sulfate in a {W}est {A}ntarctic ice core, J. Geophys. Res., 115, D18313, https://doi.org/10.1029/2010JD013846, 2010.
Lamarque, J.-F., Hess, P., Emmons, L., Buja, L., Washington, W., and Granier, C.: Tropospheric ozone evolution between 1890 and 1990, J. Geophys. Res., 110, D08304, https://doi.org/10.1029/2004JD005537, 2005.
Lamarque, J.-F., Mcconnell, J. R., Shindell, D. T., Orlando, J. J., and Tyndall, G. S.: Understanding the drivers for the 20th century change of hydrogen peroxide in {A}ntarctic ice-cores, Geophys. Res. Lett., 38, L04810, https://doi.org/10.1029/2010GL045992, 2011.
Landais, A., Lathiere, J., Barkan, E., and Luz, B.: Reconsidering the change in global biosphere productivity between the {L}ast {G}lacial {M}aximum and present day from the triple oxygen isotopic composition of air trapped in ice cores, Glob. Biogeochem. Cy., 21, 1025, https://doi.org/10.1029/2006GB002739, 2007.
Landais, A., Barkan, E., and Luz, B.: Record of $\mathrm{\delta^{18}O}$ and $\mathrm{^{17}O}$-excess in ice from {V}ostok {A}ntarctica during the last 150,000 years, Geophys. Res. Lett., 35, L02709, https://doi.org/10.1029/2007GL032096, 2008.
Langner, J., Rodhe, H., Crutzen, P. J., and Zimmermann, P.: Anthropogenic influence on the distribution of tropospheric sulphate aerosol, Nature, 359, 712–716, https://doi.org/10.1038/359712a0, 1992.
Lee, C. C.-W.: Multiple stable oxygen isotopic studies of atmospheric sulfate: A new quantitative way to understand sulfate formation processes in the atmosphere, Ph.D. thesis, University of California, San Diego, La Jolla, California, 2000.
Lee, C. C.-W. and Thiemens, M. H.: The $\mathrm{\delta^{17}O}$ and $\mathrm{\delta^{18}O}$ measurements of atmospheric sulfate from a coastal and high alpine region: A mass-independent isotopic anomaly, J. Geophys. Res., 106(D15), 17359–17373, https://doi.org/10.1029/2000JD900805, 2001.
Lee, C. C. W., Savarino, J., and Thiemens, M. H.: Mass independent oxygen isotopic composition of atmospheric sulfate: Origin and implications for the present and past atmosphere of Earth and Mars, Geophys. Res. Lett., 28(9), 1783–1786, https://doi.org/10.1029/2000GL011826, 2001.
Lee, Y. N. and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur{(IV)} by nitrogen dioxide, in: Precipitation Scavenging, Dry Deposition and Resuspension, Proceedings of the Fourth International Conference, Santa Monica, California, 29 November–3 December 1982, edited by Pruppacher, H., Semonin, R., and Slinn, W. G. N., 453–469, Elsevier, New York, 1983.
Liu, X., Chance, K., Sioris, C. E., Kurosu, T. P., Spurr, R. J. D., Martin, R. V., Fu, T.-M., Logan, J. A., Jacob, D. J., Palmer, P. I., Newchurch, M. J., Megretskaia, I. A., and Chatfield, R. B.: First directly retrieved global distribution of tropospheric column ozone from GOME}: Comparison with the {GEOS-Chem model, J. Geophys. Res., 111, D02308, https://doi.org/10.1029/2005JD006564, 2006.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Luz, B., Barkan, E., Bender, M. L., Thiemens, M. H., and Boering, K. A.: Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity, Nature, 400, 547, https://doi.org/10.1038/22987, 1999.
Lyons, J. R.: Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere, Geophys. Res. Lett., 28(17), 3231–3234, https://doi.org/10.1029/2000GL012791, 2001.
Marenco, A., Goutget, H., Nédélec, P., and Pagés, J.-P.: Evidence of a long-term increase in tropospheric ozone from {P}ic du {M}idi data series: Consequences: Positive radiative forcing, J. Geophys. Res., 99(D8), 16617–16632, https://doi.org/10.1029/94JD00021, 1994.
Mauersberger, K.: Ozone isotope measurements in the stratosphere, Geophys. Res. Lett., 14(1), 80–83, https://doi.org/10.1029/GL014i001p00080, 1987.
Mayewski, P., Lyons, W., Spencer, M., Twickler, M., Dansgaard, W., Koci, B., Davidson, C., and Honrath, R.: Sulfate and nitrate concentrations from a {S}outh {G}reenland ice core, Science, 232, 975–977, https://doi.org/10.1126/science.232.4753.975, 1986.
McCabe, J. R., Savarino, J., Alexander, B., Gong, S., and Thiemens, M. H.: Isotopic constraints on non-photochemical sulfate production in the {A}rctic winter, Geophys. Res. Lett., 33, L05810, https://doi.org/10.1029/2005GL025164, 2006.
Michalski, G. and Bhattacharya, S. K.: The role of symmetry in the mass independent isotope effect in ozone, PNAS, 106(14), 5493–5496, https://doi.org/10.1073/pnas.0812755106, 2009.
Michalski, G., Scott, Z., Kabiling, M., and Thiemens, M. H.: First measurements and modeling of $\mathrm{\Delta^{17}O}$ in atmospheric nitrate, Geophys. Res. Lett., 30(16), 1870, https://doi.org/10.1029/2003GL017015, 2003.
Mickley, L. J., Jacob, D. J., and Rind, D.: Uncertainty in preindustrial abundance of tropospheric ozone: Implications for radiative forcing calculations, J. Geophys. Res., 106(D4), 3389–3399, https://doi.org/10.1029/2000JD900594, 2001.
Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T.-M., Kurosu, T. P., Chance, K., Heald, C. L., and Guenther, A.: Spatial distribution of isoprene emissions from N}orth {A}merica derived from formaldehyde column measurements by the {OMI satellite sensor, J. Geophys. Res., 113, D02307, https://doi.org/10.1029/2007JD008950, 2008.
Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J. W.: Signature of {A}rctic surface ozone depletion events in the isotope anomaly ({$\mathrm{\Delta^{17}{O}}$}) of atmospheric nitrate, Atmos. Chem. Phys., 7, 1451–1469, https://doi.org/10.5194/acp-7-1451-2007, 2007.
Morton, J., Barns, J., Schueler, B., and Mauersberger, K.: Laboratory Studies of Heavy Ozone, J. Geophys. Res., 95, 901–907, https://doi.org/10.1029/JD095iD01p00901, 1990.
Munger, J. W., Jacob, D. J., Waldman, J. M., and Hoffmann, M. R.: Fogwater chemistry in an urban atmosphere, J. Geophys. Res., 88(C9), 5109–5121, https://doi.org/10.1029/JC088iC09p05109, 1983.
Olivier, J. G. J., van Aardenne, J. A., Dentener, F. J., Ganzeveld, L., and Peters, J. A.: Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources, in: Non-CO2 Greenhouse Gases (NCGG-4), edited by: van Amstel, A., 325–30, Millpress, 2005.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the {U}nited {S}tates: Implications for policy, J. Geophys. Res., 109, D15204, https://doi.org/10.1029/2003JD004473, 2004.
Parrella, J. P., Evans, M. J., Jacob, D. J., Mickley, L. J., Miller, B., and Liang, Q.: Improved simulation of preindustrial surface ozone in a model with bromine chemistry, AGU Fall Meeting Abstracts, 2010.
Patris, N., Delmas, R. J., and Jouzel, J.: Isotopic signatures of sulfur in shallow {A}ntarctic ice cores, J. Geophys. Res., 105(D6), 7071–7078, https://doi.org/10.1029/1999JD900974, 2000.
Patris, N., Cliff, S. S., Quinn, P. K., Kasem, M., and Thiemens, M. H.: Isotopic analysis of aerosol sulfate and nitrate during {ITCT-2k2}: Determination of different formation pathways as a function of particle size, J. Geophys. Res., 112, D23301, https://doi.org/10.1029/2005JD006214, 2007.
Pavelin, E. G., Johnson, C. E., Rughooputh, S., and Toumi, R.: Evaluation of pre-industrial surface ozone measurements made using {S}chönbein's method, Atmos. Environ., 33, 919–929, https://doi.org/10.1016/S1352-2310(98)00257-X, 1999.
Savarino, J. and Thiemens, M. H.: Analytical procedure to determine both $\mathrm{\delta^{18}{O}}$ and $\mathrm{\delta^{17}{O}}$ of $\mathrm{{H}_2{O}_2}$ in natural water and first measurements, Atmos. Environ., 33, 3683–3690, https://doi.org/10.1016/S1352-2310(99)00122-3, 1999.
Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Laboratory oxygen isotopic study of sulfur({IV}) oxidation: Origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on {E}arth, J. Geophys. Res., 105(D23), 29079–29088, https://doi.org/10.1029/2000JD900456, 2000.
Savarino, J., Bhattacharya, S. K., Morin, S., Baroni, M., and Doussin, J.-F.: The $\mathrm{NO + O_3}$ reaction: A triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly, J. Chem. Phys., 128, 194303, https://doi.org/10.1063/1.2917581, 2008.
Sigg, A. and Neftel, A.: Evidence for a 50% increase in $\mathrm{H_2O_2}$ over the past 200 years from a {G}reenland ice core, Nature, 351, 557–559, https://doi.org/10.1038/351557a0, 1991.
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.: Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 11, 1101–1116, https://doi.org/10.5194/acp-11-1101-2011, 2011.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., (Eds.): Climate Change 2007 – The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Staffelbach, T., Neftel, A., Stauffer, B., and Jacob, D.: A record of the atmospheric methane sink from formaldehyde in polar ice cores, Nature, 349, 603–605, https://doi.org/10.1038/349603a0, 1991.
Stone, D., Evans, M. J., Edwards, P. M., Commane, R., Ingham, T., Rickard, A. R., Brookes, D. M., Hopkins, J., Leigh, R. J., Lewis, A. C., Monks, P. S., Oram, D., Reeves, C. E., Stewart, D., and Heard, D. E.: Isoprene oxidation mechanisms: measurements and modelling of OH and HO2 over a S}outh-{E}ast {A}sian tropical rainforest during the {OP3 field campaign, Atmos. Chem. Phys. Discuss., 11, 10343–10401, https://doi.org/10.5194/acpd-11-10343-2011, 2011.
Straub, D. J., Lee, T., and Collett, J. L.: Chemical composition of marine stratocumulus clouds over the eastern {P}acific {O}cean, J. Geophys. Res., 112, D04307, https://doi.org/10.1029/2006JD007439, 2007.
Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y., Tang, Y., and Carmichael, G. R.: Revisiting C}hina's {CO emissions after the {T}ransport and {C}hemical {E}volution over the {P}acific ({TRACE-P}) mission: Synthesis of inventories, atmospheric modeling, and observations, J. Geophys. Res., 111, D14306, https://doi.org/10.1029/2006JD007118, 2006.
Thiemens, M. H.: History and Applications of Mass-Independent Isotope Effectsa, Ann. Rev. Earth Pl. Sc., 34, 217, https://doi.org/10.1146/annurev.earth.34.031405.125026, 2006.
Thiemens, M. H. and Heidenreich, J.: The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications, Science, 219, 1073–1075, https://doi.org/10.1126/science.219.4588.1073, 1983.
Thompson, A. M.: The oxidizing capacity of the {E}arth's atmosphere: Probable past and future changes., Science, 256, 1157–1165, https://doi.org/10.1126/science.256.5060.1157, 1992.
Thompson, A. M., Chappellaz, J. A., Fung, I. Y., and Kucsera, T. L.: The atmospheric $\mathrm{{CH}_4}$ increase since the L}ast {G}lacial {M}aximum. {II - Interactions with oxidants, Tellus, 45, 242–257, https://doi.org/10.1034/j.1600-0889.1993.t01-2-00003.x, 1993.
Troy, R. C. and Margerum, D. W.: Non-metal redox kinetics: Hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem., 30, 3538–3543, https://doi.org/10.1021/ic00018a028, 1991.
Usher, C. R., Michel, A. E., and Grassian, V. H.: Reactions on mineral dust, Chem. Rev., 103, 4883–4940, https://doi.org/10.1021/cr020657y, 2003.
Vestreng, V. and Klein, H.: Emission data reported to UNECE/EMEP}: Quality insurance and trend analysis & Presentation of {W}eb{D}ab, {MSC-W Status Report, Tech. rep., Norwegian MEteorological Institute, Oslo, Norway, \urlprefixhttp://www.emep.int/publ/reports/2002/mscw_note_1_2002.pdf, 2002.
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, https://doi.org/10.1038/383327a0, 1996.
Volz, A. and Kley, D.: Evauluation of the {M}ontsouris seris of ozone measurements made in the nineteenth century, Nature, 332, 240–242, https://doi.org/10.1038/332240a0, 1988.
von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer 2. Interactions with sulfur and the cloud-covered MBL, J. Geophys. Res., 107(D17), 4323, https://doi.org/10.1029/2001JD000943, 2002.
Wang, M., Ghan, S., Ovchinnikov, M., Liu, X., Easter, R., Kassianov, E., Qian, Y., and Morrison, H.: Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF, Atmos. Chem. Phys. Discuss., 11, 3399–3459, https://doi.org/10.5194/acpd-11-3399-2011, 2011.
Wang, Y. and Jacob, D. J.: Anthropogenic forcing on tropospheric ozone and OH since preindustrial times, J. Geophys. Res., 103(D23), 31123–31135, https://doi.org/10.1029/1998JD100004, 1998.
Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric $\mathrm{{O}_3}−\mathrm{{NO}_x}$-hydrocarbon chemistry 1. Model formulation, J. Geophys. Res., 103(D9), 10713–10725, https://doi.org/10.1029/98JD00158, 1998.
Wang, Z., Chappellaz, J., Park, K., and Mak, J. E.: Large variations in {S}outhern {H}emisphere biomass burning during the last 650 years, Science, 330, 1663–1666, https://doi.org/10.1126/science.1197257, 2010.
Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, https://doi.org/10.1039/A906558J, 1999.
Wu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and Rind, D.: Why are there large differences between models in global budgets of tropospheric ozone?, J. Geophys. Res., 112, D05302, https://doi.org/10.1029/2006JD007801, 2007.
Altmetrics
Final-revised paper
Preprint