Articles | Volume 26, issue 1
https://doi.org/10.5194/acp-26-427-2026
https://doi.org/10.5194/acp-26-427-2026
Research article
 | 
08 Jan 2026
Research article |  | 08 Jan 2026

Simulating out-of-sample atmospheric transport to enable flux inversions

Nikhil Dadheech and Alexander J. Turner

Related authors

High-resolution greenhouse gas flux inversions using a machine learning surrogate model for atmospheric transport
Nikhil Dadheech, Tai-Long He, and Alexander J. Turner
Atmos. Chem. Phys., 25, 5159–5174, https://doi.org/10.5194/acp-25-5159-2025,https://doi.org/10.5194/acp-25-5159-2025, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary

Cited articles

Asimow, N. G., Turner, A. J., and Cohen, R. C.: Sustained Reductions of Bay Area CO2 Emissions 2018–2022, Environmental Science & Technology, 58, 6586–6594, https://doi.org/10.1021/acs.est.3c09642, 2024. a
Asimow, N. G., Patel, M. Y., Zhu, Y., Winter, A. R., Gurney, K. R., Berelson, W. M., Turner, A. J., and Cohen, R. C.: Differences in Regional Home Heating Behavior in Three U.S. Cities Revealed by Ground-Based Sensor Network, Geophysical Research Letters, 52, e2025GL115772, https://doi.org/10.1029/2025GL115772, 2025. a
Bishop, C. M.: Pattern Recognition and Machine Learning by Christopher M. Bishop, Springer Science+ Business Media, LLC, ISBN 10 0-387-31073-8, ISBN 13 978-0387-31073-2, 2006. a
Cartwright, L., Zammit-Mangion, A., and Deutscher, N. M.: Emulation of greenhouse-gas sensitivities using variational autoencoders, Environmetrics, 34, e2754, https://doi.org/10.1002/env.2754, 2023. a, b
Dadheech, N. and Turner, A.: Simulating out-of-sample atmospheric transport to enable flux inversions, Zenodo [code], https://doi.org/10.5281/zenodo.16010441, 2025a. a
Download
Short summary
We developed a generalized emulator of atmospheric transport (FootNet v3) trained over the United States, enabling the emulation of both surface & column-averaged footprints at kilometer-scale resolution. We demonstrate that FootNet v3 generalizes to previously unseen regions and meteorological conditions, enabling accurate out-of-sample simulation of atmospheric transport. Flux inversion case studies show that FootNet matches or exceeds the performance of full-physics models in unseen regions.
Share
Altmetrics
Final-revised paper
Preprint