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Abstract. Accurately estimating greenhouse gas (GHG) emissions from atmospheric observations requires re-
solving the upwind influence of measurements via atmospheric transport and dispersion models. However, the
computational demands of physics-based models limit the scalability of flux inversions, particularly for dense
in situ and satellite-based observations. Here, we present FootNet v3, a deep-learning emulator of atmospheric
transport based on a U-Net++ architecture, which improves generalization and inversion fidelity over prior
U-Net-based models. FootNet v3 is trained on 500 000 footprint examples across the contiguous United States.
It predicts surface and column-averaged source-receptor relationships at kilometer-scale resolution and operates
650× faster than traditional Lagrangian models. Critically, FootNet learns the underlying physical relationship
between meteorology and atmospheric transport. We show that it produces consistent source-receptor relation-
ships when driven by GFS meteorology, even though it was trained with HRRR inputs. FootNet generalizes to
unseen regions and meteorological regimes, enabling accurate flux inversions in domains withheld during train-
ing. Case studies using GHG measurements in the San Francisco Bay Area and Barnett Shale show that FootNet
matches or exceeds the performance of physics-based models when used in a flux inversion and evaluated against
independent GHG observations. This is achieved despite FootNet having never seen meteorological inputs from
Northern California or North Texas. Feature importance testing identifies physically meaningful drivers that are
consistent across both surface and column models. These findings show that machine learning models can learn
the underlying physical relationships governing atmospheric transport, allowing them to extrapolate to out-of-
sample scenarios and support real-time, high-resolution GHG flux estimation in novel domains without the need
for retraining or precomputed footprint libraries.

1 Introduction

Carbon dioxide (CO2) and methane (CH4) are the two most
important greenhouse gases (GHGs). Together, they account
for more than 85 % of the cumulative radiative forcing since
the pre-industrial era (IPCC, 2023). Accurate characteriza-
tion of their sources and sinks across spatial scales is essen-
tial for constraining future climate trajectories. However, the
computational burden and data storage demands of physics-
based atmospheric transport models limit the scalability of
current inversion frameworks, especially when leveraging
dense GHG observations (Roten et al., 2021; Cartwright
et al., 2023; Fillola et al., 2023, 2025). To overcome these
limitations, He et al. (2025) and Dadheech et al. (2025) intro-

duced FootNet, a machine learning emulator of atmospheric
transport tailored for surface observations. Here, we extend
FootNet into a generalized framework (FootNet v3) trained
over the Contiguous United States (CONUS), enabling the
emulation of both surface and column-averaged source-
receptor relationships (“footprints”) at kilometer-scale reso-
lution. Crucially, we demonstrate that FootNet v3 generalizes
to previously unseen regions and meteorological conditions,
enabling accurate out-of-sample simulation of atmospheric
transport. This capability represents a significant advance, as
it addresses a long-standing limitation in inversion systems:
the reliance on site-specific, computationally intensive mod-
eling.
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Recent work has underscored the value of dense, continu-
ous GHG observations for quantifying and attributing emis-
sions (e.g., Turner et al., 2020; Varon et al., 2023; Hamilton
et al., 2024; Asimow et al., 2024, 2025). Observation net-
works such as INFLUX (Davis et al., 2017) and BEACO2N
(Shusterman et al., 2016) have expanded the spatial and tem-
poral resolution of in situ CO2 and methane measurements,
particularly in urban environments. Concurrently, satellite-
based retrievals have advanced dramatically: OCO-2 and
OCO-3 provide column-averaged CO2 at 2.25 km× 1.29 km
resolution on 16 d cycles (O’Dell et al., 2012; Eldering
et al., 2019), TROPOMI offers daily methane retrievals at
5.5 km× 7 km (Veefkind et al., 2012), and MethaneSAT will
resolve emissions at 130 m× 400 m (Rohrschneider et al.,
2021).

GHG inversion frameworks relate atmospheric observa-
tions to surface fluxes through a linear transport operator:

y =Hx+ b, (1)

where y is the vector of n observations, x the vector of m
fluxes, b the background, and H the Jacobian matrix describ-
ing transport. Each row of H encodes the influence of surface
fluxes on a specific observation, and each column reflects the
impact of a surface pixel on all observations. As the resolu-
tion of x or density of y increases, the cost of computing and
storing H becomes prohibitive.

Physics-based models such as Eulerian transport solvers or
Lagrangian Particle Dispersion Models (LPDMs) are com-
monly used to construct H, which is then used to infer GHG
fluxes within an inversion framework. For example, the Inte-
grated Methane Inversion (IMI) is an Eulerian-based inver-
sion framework focusing on regional scale at 25 km resolu-
tion (Varon et al., 2022; Estrada et al., 2025). Eulerian-based
frameworks struggle with high spatiotemporal resolutions as
the number of model simulations is proportional to the di-
mensions of x. Variational methods such as 4D-var are also
popular in flux inversions, which require an adjoint of the
Eulerian model to compute the atmospheric transport (Henze
et al., 2007). LPDMs like STILT and X-STILT are often pre-
ferred at high resolution due to their flexibility and ability to
resolve localized sensitivity patterns (Lin et al., 2003; Fasoli
et al., 2018; Wu et al., 2018). However, these models scale
linearly with the number of observations, creating a compu-
tational bottleneck for dense observational datasets.

Several recent studies have explored the use of machine
learning to emulate LPDM outputs and reduce computational
costs (Roten et al., 2021; Cartwright et al., 2023; Fillola
et al., 2023). These approaches typically interpolate or ap-
proximate LPDM simulations using learned surrogate mod-
els, but they often remain dependent on precomputed LPDM
libraries or perform poorly outside of the training domain.
FootNet eliminates this dependency by enabling direct infer-
ence of atmospheric transport sensitivities without additional
LPDM simulations. He et al. (2025) first demonstrated this
approach for surface footprints in two domains; Dadheech

et al. (2025) improved near/far-field balance and showed that
FootNet could support high-resolution urban flux inversions.
Here, we substantially broaden the scope of the model. Foot-
Net v3 is trained on 500 000 footprint examples spanning a
wide range of locations, seasons, and meteorological condi-
tions across CONUS. It comprises separate models for sur-
face and column-averaged footprints and is trained using
STILT and X-STILT outputs, respectively.

We emphasize a key result: FootNet v3 enables out-of-
sample simulation of atmospheric transport. We evaluate its
generalizability using flux inversion case studies in domains
withheld from training, including CO2 inversions in the San
Francisco Bay Area and methane inversions over the Bar-
nett Shale. In both cases, FootNet v3 matches or outperforms
physics-based LPDMs. This result demonstrates, for the first
time, that machine learning can replicate transport model
performance in novel regions without re-running expensive
simulations. The ability to emulate atmospheric transport
out-of-sample is a foundational step toward operational, real-
time flux inversions at continental scale.

2 Development of a generalizable machine learning
emulator for atmospheric transport

FootNet v3 adopts a U-Net++ architecture (Zhou et al.,
2018) with 37 million parameters, replacing the U-Net archi-
tecture used in earlier versions (He et al., 2025; Dadheech
et al., 2025). Figure 1 shows a schematic of the architec-
ture. The U-Net++ is a deep encoder-decoder model de-
signed to preserve multiscale spatial features while improv-
ing feature fusion between encoder and decoder layers. This
nested, dense skip-connection design reduces the imbalance
between near and far-field footprint sensitivity observed in
prior versions. We trained two separate models within this
framework: one for surface footprints and one for column-
averaged footprints. Both models share the same general ar-
chitecture but differ in their input feature sets to reflect the
physical drivers of transport relevant to surface and column
observations.

To train FootNet v3, we constructed a training dataset of
500 000 footprints across the CONUS domain to support
generalizable inference of transport sensitivity. Figure 2 il-
lustrates the spatial receptors sampling strategy, which con-
sists of two components: (1) uniformly distributed individ-
ual receptors (gray dots) and (2) 400 km× 400 km subdo-
mains with enhanced sampling (red stars). A receptor refers
to a specified location, time, and measurement type (sur-
face or column-averaged) for which a corresponding foot-
print is simulated. Each receptor is randomly sampled across
months, days, and hours in 2020 and 2021 to expose the
model to diverse meteorological states. In the enhanced sam-
pling regions, we generated approximately 2500 footprints
per domain, capturing local variation in winds, boundary
layer dynamics, and terrain.
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Figure 1. Schematic of the UNet++ architecture used in FootNet v3. The green circles and green & blue arrows represent new layers
and their respective connections compared to the earlier U-Net architecture. Input features include meteorological fields, Gaussian plumes,
and spatial context features. The model outputs the predicted footprint sensitivity for a given observation. All meteorological inputs include
fields from 0, 6, 12, 18, and 24 h before the receptor time. We applied a 3× 3 convolution kernel on the convolution layers. The U-Net++
architecture is adapted from Zhou et al. (2018).

These 500 000 footprints were split into two training con-
figurations. The first, which we refer to as the out-of-sample
FootNet, excludes all data from 2020 and two regions: the
bulk of California and much of Texas. The out-of-sample
FootNet uses footprints from 2021 for training. Within these
two regions are two case studies reserved for later out-
of-sample evaluation: the San Francisco Bay Area (Do-
main A) and the Barnett Shale region (Domain B). These
out-of-sample evaluations are done using the observations
from 2020. The second configuration, the in-sample Foot-
Net, includes all 500 000 observations from both 2020 &
2021, and provides a high-capacity emulator suitable for de-
ployment. For validation and testing, we randomly picked
400× 400 km2 subdomains (similar to Fig. 2) with enhanced
temporal sampling, as well as footprints computed for ran-
domly sampled receptors across CONUS that do not corre-
spond to the training receptor locations. We used 50 000 foot-
prints randomly sampled in 2020 and 2021 for testing and
validation.

Each receptor was simulated using STILT (Lin et al., 2003;
Fasoli et al., 2018) for surface footprints and X-STILT (Wu
et al., 2018) for column-averaged footprints, using NOAA
High Resolution Rapid Refresh (HRRR) meteorology at
3 km resolution regridded to 1 km. The trajectories were sim-
ulated backward in time for 72 h, or until the particles ex-
ited the domain, whichever occurred first. Surface and col-
umn simulations were co-located in space and time, provid-
ing a matched training set across footprint types. The result
is a comprehensive dataset enabling FootNet to learn robust

mappings from meteorological inputs to transport sensitivi-
ties across CONUS.

As mentioned above, we trained two models using the
same general architecture: one for surface footprints and one
for column-averaged footprints. Inputs to each model include
meteorological fields interpolated from HRRR to 1 km reso-
lution. This is done to ensure that all the input fields (e.g., me-
teorology, Gaussian plume, etc.) are at the same spatial res-
olution. These meteorology fields include zonal and merid-
ional wind components, temperature, surface pressure, and
boundary layer height sampled at 0, 6, 12, 18, and 24 h before
the receptor time (i.e., backward in time). We found minimal
improvement in performance when including meteorologi-
cal inputs more than 24 h backward in time. To guide spatial
structure, we include the linear distance to the receptor and
a simplified Gaussian plume estimate derived from surface
winds. Importantly, many of these fields do not need to be
stored on disk and can be computed through a few floating
point operations. The “Inputs” table in Fig. 1 indicates the
fields that must be loaded from disk and which are computed
on-the-fly. Column FootNet models additionally incorporate
winds at 850 and 500 hPa, and temperature at 850 hPa. These
features enable the model to learn sensitivity to both near-
surface and free-tropospheric transport. The model outputs a
footprint field matching the domain of the meteorological in-
put grid. We use mean squared error as the primary loss func-
tion, with an optional penalty on total footprint mass to en-
courage mass conservation (mass conservation is described
later).
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Figure 2. (Top panel) Receptors for training out-of-sample FootNet. Gray dots indicate individual receptors sampled uniformly across
CONUS. Red stars show centers of 400× 400 km2 subdomains with enhanced temporal sampling. Domains A and B are withheld in the
out-of-sample training configuration. Figure S1 in the Supplement shows the full training data used for the in-sample FootNet model. Bottom
row shows the observational networks used in both case studies. The blue boundaries in Domain B show counties in the Barnett Shale basin.
Background satellite imagery is taken from © Google Maps.

The size of the full training data set is 30 TB. Given the
scale of the training set, we distributed training across 18
NVIDIA A2 GPUs (16GB memory) using PyTorch’s Dis-
tributed Data Parallel (DDP) framework. Each GPU pro-
cesses a distinct shard of the data, with gradients synchro-
nized through NVIDIA’s NCCL backend. This reduced train-
ing time from several months on a single GPU to under 10 d.
Once trained, FootNet can compute a footprint in under a sec-
ond on a single GPU. This represents a 650× speedup rel-
ative to the physics-based model and enables near-real-time
inference in flux inversion workflows.

An important question we encountered while generaliz-
ing FootNet over the whole CONUS was “how many train-
ing samples do we need to ensure generalizability of the
FootNet model?” To quantify how training set size impacts
model skill, we trained multiple versions of FootNet using
subsets of the full 500 000-sample dataset. Each version was
trained from scratch with the same architecture, loss func-

tion, and training protocol. Figure 3 summarizes the evolu-
tion of validation loss over training epochs and the minimum
loss achieved for each subset size. Figure 3a shows that mod-
els trained on smaller datasets converge more slowly and
to higher final loss values. Increasing the number of train-
ing samples yields consistent gains in predictive skill up to
roughly 100 000 examples. Beyond this point, improvements
begin to saturate, suggesting diminishing returns on valida-
tion loss for additional data. This asymptotic behavior is con-
sistent for both surface and column-averaged footprint mod-
els (Fig. 3b). For generalizable inference with uniform skill
across the diverse meteorological and geographic conditions
represented within CONUS, the full training set remains es-
sential.

Mass conservation is a defining feature of physical trans-
port models, and its absence can lead to artifacts in source-
receptor relationships. This may be particularly problematic
when used in a flux inversion as one may infer erroneous
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Figure 3. Training set size versus model performance. (A) Evolution of validation loss for surface footprint models trained with different
dataset sizes. (B) Minimum validation loss for surface and column models as a function of training set size. Results shown are for a single
random seed.

fluxes that do not conserve mass. While traditional LPDMs
enforce conservation through explicit particle tracking and
boundary layer diagnostics, machine learning models such
as FootNet lack built-in physical constraints. Here, we ex-
plore whether a simple regularization strategy can help en-
force mass conservation without degrading predictive skill.

The footprint value for a pixel at a given timestep is di-
rectly proportional to the mass of the air parcel (Lin et al.,
2003). As such, we modified the loss function used during
training to include a penalty on the difference in total mass
between the ith predicted footprint hi and the reference foot-
print ĥi from STILT or X-STILT:

L(hi, ĥi)=MSE(hi, ĥi)+α

∣∣∣∑hi −
∑

ĥi

∣∣∣∑
ĥi

, (2)

where α is a tunable penalty weight and MSE is the mean
squared error. The second term acts as a soft constraint, dis-
couraging total footprint biases without imposing strict con-
servation.

We conducted a sensitivity analysis to assess how this con-
straint affects performance. Figure 4 shows the trade-off be-
tween validation loss (MSE) and percentage footprint sum
difference for different values of α. For surface footprints,
modest penalty values (i.e., α = 1000) reduce mass conser-
vation errors without significantly increasing validation loss.
Larger values of α overly constrain the network and degrade
performance. For column footprints, we found no clear ben-
efit to including a mass penalty, and the final column model
was trained with α = 0.

Although this penalty is not a substitute for explicit mass-
tracking, it offers a lightweight and computationally efficient
way to discourage unphysical footprint predictions. Other ap-
proaches for mass conservation could be explored in future

Figure 4. Trade-off between validation loss (mean squared error;
MSE) and percentage footprint sum difference for different values
of α in the surface FootNet model.

work (e.g., Sturm and Wexler, 2020; Wang and Gupta, 2024;
Meng et al., 2025). This approach may be especially useful
in applications where integrated footprint magnitude directly
affects inversion results.

To evaluate how well FootNet generalizes across space and
observation type, we compare predicted footprints against
STILT and X-STILT outputs in regions and conditions not
used during training. Figure 5 shows representative exam-
ples drawn from the independent test set, including surface
and column-averaged footprints across a range of meteoro-
logical states. In each case, FootNet captures the dominant
spatial structure of the reference footprint, including the di-
rectionality imposed by wind fields and the localization as-
sociated with boundary layer mixing. For example, in Mas-
sachusetts, the model reproduces a classic Gaussian plume
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Figure 5. Comparison of in-sample FootNet-predicted footprints (right column) with STILT or X-STILT footprints (left column) for ran-
domly selected test examples. Green stars mark receptor locations; blue arrows show instantaneous wind direction. Examples span both
surface and column footprints across multiple CONUS regions. Figure S7 shows a similar comparison for out-of-sample FootNet-predicted
footprints for the year 2020.

aligned with surface winds for a hypothetical surface obser-
vation. In Michigan, we can see that the X-STILT column
footprint hugs the shoreline of Lake Michigan and FootNet
reproduces this complex spatial pattern with high fidelity.
Similarly, a column example from Utah shows a complex
footprint shaped by topography and mesoscale flows, which
is well-approximated by FootNet. In Texas, the large-scale
flow is consistent between FootNet and STILT, but STILT
exhibits sharper, more localized structures, whereas FootNet
yields a smoother footprint. While STILT’s spatial structure
is more physically realistic (as it directly solves the govern-
ing equations), it is not necessarily more accurate due to
potential biases in the driving meteorological fields. Highly
localized but biased footprints could introduce artifacts in
GHG flux inversions. In this context, the smoother predic-
tion from FootNet may actually be preferable. However, it is
important to note that FootNet is trained on STILT and X-
STILT. As such, the improved performance against indepen-
dent atmospheric observations implies that the smoothness is
mitigating underlying model errors. We also note that other
approaches have been developed to mitigate transport errors

within physics-based models and inversion frameworks. For
example, incorporating stochastic wind uncertainties to en-
hance dispersion (Lin and Gerbig, 2005), and explicitly ac-
counting for correlated transport errors over the footprint du-
ration (Jones et al., 2021). Overall, Fig. 5 shows that FootNet
reproduces footprints with high fidelity across a wide range
of conditions.

As noted in Dadheech et al. (2025) and can be seen in
Fig. 5, FootNet outputs are often smoother than those from
LPDMs, which can exhibit sharp boundaries due to discrete
particle trajectories. Machine learning models generalize by
finding an underlying trend instead of fitting every noisy data
point (Shukla et al., 2021). FootNet model architecture con-
sists of Convolutional Neural Network (CNN) layers that
perform convolution operations on local neighborhoods in-
stead of processing individual pixels (Bishop, 2006). These
are the two primary reasons why the FootNet model pro-
duces smoother outputs. While this smoothing can obscure
fine-scale structure, it reduces sensitivity to meteorological
noise and can improve stability in inversion settings. These
results demonstrate that FootNet reliably reproduces trans-
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port patterns across diverse regions and observation types.
This generalization is essential for scaling inversion systems
to new domains without re-running expensive transport sim-
ulations.

To assess FootNet’s sensitivity to the meteorological in-
puts used in training and evaluation, we tested its ability
to generate footprints using meteorology from the Global
Forecast System (GFS), which differs substantially from the
HRRR fields on which FootNet was trained. Specifically, we
compared footprints generated by FootNet using GFS meteo-
rology to STILT footprints computed with GFS meteorology.
Figure 6 shows footprint comparisons for the same receptors
in the San Francisco Bay Area. We note that these footprints
were withheld from the FootNet training process. FootNet
predictions using HRRR meteorology closely match STILT-
HRRR footprints, as expected. Notably, higher bias occurs
for small footprint values, particularly in the far-field, where
the smoothness of FootNet footprints results in deviations
from the ground truth STILT footprints. When driven with
GFS meteorology, FootNet footprints still capture the over-
all structure and magnitude of the STILT-GFS footprints, de-
spite being trained using meteorology from HRRR. These re-
sults suggest that FootNet is learning the underlying physical
relationship between meteorology and the source-receptor
relationship.

This further suggests that while FootNet is optimized for
the meteorology on which it is trained, it maintains skill
when driven by alternate meteorological products. This is
important because HRRR is only available over CONUS,
whereas GFS is a global product. This means that FootNet
can be used in domains outside of CONUS with GFS or any
other global meteorology products. Given the known discrep-
ancies between meteorological models and among LPDMs
themselves, these differences seen in Fig. 6 fall within ex-
pected tolerances. For instance, STILT and FLEXPART can
produce similar or larger disagreements than observed here
when run under similar conditions (Karion et al., 2019; Mu-
nassar et al., 2023). This flexibility allows FootNet to sup-
port flux inversions using multiple sources of meteorology,
including global reanalysis products, and implies that Foot-
Net may perform well in simulating atmospheric transport in
out-of-sample domains.

3 Evaluating in-sample and out-of-sample flux
inversion performance

A central aim of this study is to assess whether FootNet can
enable high-resolution flux inversions in regions excluded
from training. To test this, we conducted flux inversion ex-
periments using both surface and column observations in two
held-out domains: the San Francisco Bay Area (Domain A)
and the Barnett Shale region in Texas (Domain B). For each
domain, we performed three inversions using: (1) a physics-
based LPDM (baseline), (2) an in-sample FootNet model

trained on all of CONUS, and (3) an out-of-sample FootNet
model trained with data from 2021 and the target domain
withheld (see Fig. 2). These experiments evaluate the gen-
eralizability of FootNet in practical inversion settings. The
in-sample model was trained on 500 000 samples, includ-
ing data from Domains A and B, while the out-of-sample
models excluded data from both of the evaluation domains.
Demonstrating accurate inversions under this setup is critical
for scaling flux estimation frameworks to other observation
networks.

For Domain A (San Francisco Bay Area), we used hourly
CO2 observations from the BEACO2N network between
February and May 2020. Inversions used three footprint con-
figurations: STILT (baseline), in-sample FootNet, and out-
of-sample FootNet (with no Bay Area training data). All in-
versions used the same Bayesian framework and prior fluxes,
based on previous work (McDonald et al., 2014; Turner et al.,
2016, 2020; Dadheech et al., 2025). For Domain B (Bar-
nett Shale), we performed daily methane inversions using
TROPOMI column data between February and April 2020.
The same three configurations were applied: X-STILT (base-
line), in-sample FootNet, and out-of-sample FootNet (ex-
cluding Barnett Shale data). All inversions used the same
Bayesian framework and prior fluxes, with the Environmen-
tal Protection Agency (EPA) anthropogenic methane emis-
sion inventory as the prior (Maasakkers et al., 2023). A de-
tailed description of the inversion setup for Domains A & B
is provided in Appendix A.

Figures 7 and 8 show inversion performance against CO2
and methane observations withheld from the inversions. All
statistics are computed using these independent observations.
The out-of-sample FootNet setup (bottom rows in Figs. 7 and
8) evaluates model performance in regions entirely excluded
from training, constituting a rigorous test of spatial gener-
alization. Unlike previous work that included training data
from the San Francisco Bay Area, albeit for different time
periods (Dadheech et al., 2025). This configuration directly
probes FootNet’s extrapolation capability.

Figure 7 summarizes the Bay Area inversion results.
Both in-sample and out-of-sample FootNet models produce
smoother footprints than STILT, leading to broader cumula-
tive influence. Consistent with the findings of Dadheech et al.
(2025), FootNet outperforms STILT when compared against
independent CO2 observations. The key distinction here is
that FootNet achieves this performance even when trained
exclusively on data outside of the region. All three configura-
tions identify high emissions along freeways and around the
Bay. Overall, the FootNet models exhibit better correlation
and lower mean squared error (MSE) than STILT. Notably,
the out-of-sample model performs on par with the in-sample
model and slightly better than STILT, demonstrating success-
ful generalization. Fluxes inferred using FootNet footprints
are slightly more diffusive than those inferred using STILT
footprints, though the difference in the distributions is small
(see Fig. S6 in the Supplement).
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Figure 6. Comparison between FootNet and STILT footprints using different meteorological inputs. The x-axes show STILT-simulated
footprint values using HRRR (left) and GFS (right) meteorology. The y-axes show corresponding FootNet predictions using the same
meteorological inputs. FootNet was trained exclusively on HRRR data and has never seen GFS meteorology. All predictions are made at the
same receptor locations and compared against independent test footprints withheld from training. Each data point in the plot represents a non-
zero influence pixel from one of the 5000 randomly sampled footprints in the test set. The unit of the footprints is ppm (µmol m−2 s−1)−1.

Figure 8 shows the inversion results for the Barnett Shale.
As in the Bay Area, FootNet produces smoother footprints
than X-STILT while preserving the key spatial structure
and magnitude of the posterior fluxes. The inferred methane
emissions from both FootNet models are in close agree-
ment with those from X-STILT. Evaluation against held-out
TROPOMI observations shows comparable correlation and
slightly improved MSE. Again, the out-of-sample FootNet
performs similarly to the in-sample model and X-STILT.

Together, these results demonstrate that FootNet enables
accurate, high-resolution flux inversions in regions entirely
excluded from training. This eliminates the need for site-
specific retraining or precomputed footprint libraries, estab-
lishing FootNet as a scalable solution for real-time green-
house gas monitoring across broad spatial domains.

4 Interpreting model predictions: feature
importance

To identify which inputs contribute most to model predic-
tions, we applied the Permute-and-Predict (PaP; Fisher et al.,
2019) method to 5000 examples from the test set. The PaP
method estimates the feature importance by measuring the
drop in model performance when each input feature is ran-
domly shuffled within a sample. A greater drop in perfor-
mance indicates the higher importance of that feature to the
model. This approach reveals the relative importance of each
input to footprint prediction. Figure 9 shows the six most in-
fluential features for both surface and column models. In both
cases, the Gaussian plume proxy is the top feature. This syn-

thetic field encodes a directional prior based on surface winds
and provides a strong initial guess of footprint location and
spread. Zonal and meridional wind components at the time
of observation also rank highly, consistent with their role in
advecting plumes.

Interestingly, distance to receptor is also among the most
important features. This variable captures spatial proximity
and helps the model balance near and far-field sensitivity.
Other meteorological features such as boundary layer height,
temperature, and pressure appear less influential but still con-
tribute meaningfully to the full prediction. The overall rank-
ing of features is consistent across surface and column mod-
els, suggesting that both variants rely on similar transport-
relevant signals. Figures S2 and S3 provide a complete rank-
ing of all inputs. Overall, the consistency of the identified
features and their importance in atmospheric transport indi-
cates that FootNet is learning physically meaningful drivers
of atmospheric transport. Because FootNet is learning phys-
ically meaningful relationships, it is able to extrapolate to
out-of-sample footprints with high fidelity.

5 Conclusions

Dense, high-resolution atmospheric GHG observations from
surface networks and satellites offer the potential to constrain
regional emissions at unprecedented spatiotemporal scales.
However, the computational demands of physics-based at-
mospheric transport models have become a central bottle-
neck for flux inversion systems operating at these resolutions.
Previous work introduced FootNet as a proof-of-concept
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Figure 7. CO2 inversion results in the San Francisco Bay Area using STILT, in-sample FootNet, and out-of-sample FootNet footprints. (Left
column) Cumulative footprint influence. (Middle column) Posterior CO2 flux inferred from the BEACO2 network. (Right column) Compar-
ison of observed and simulated CO2 concentrations from an independent test set using the corresponding posterior fluxes. Observations were
drawn using a consistent seed across experiments. White contours in the left column represent the 60th percentile of the cumulative footprint
influence. The percentage cumulative influence is relative to the cumulative footprint sum for each grid point.

deep learning emulator of atmospheric transport (He et al.,
2025; Dadheech et al., 2025). In this study, we developed and
evaluated FootNet v3, a machine learning emulator of atmo-
spheric transport trained on half a million footprint examples
across the contiguous United States. FootNet v3 uses a U-
Net++ architecture and includes a soft mass-conservation
constraint, enabling it to predict source-receptor relation-
ships for both surface and column-averaged observations. It
generalizes to previously unseen regions and meteorological
conditions and is several orders of magnitude faster than tra-
ditional models, enabling it to function as a full surrogate
for LPDMs without site-specific retraining or physics-based
simulations.

We showed that FootNet replicates key structures in trans-
port footprints across diverse terrain and weather conditions.
Its predictions maintain skill even when driven with out-of-
sample meteorological forcing. This was demonstrated by
FootNet accurately simulating footprints using GFS meteo-
rology despite being trained with HRRR meteorology. We
argue that FootNet is learning the fundamental relationship
between meteorology and source-receptor relationships.

Further, we conducted GHG flux inversions with hourly
CO2 observations in the San Francisco Bay Area, and daily
column-averaged methane observations in the Barnett Shale
region. We conducted three GHG flux inversions for both
of these regions: first with physics-based LPDM footprints,
the second with in-sample FootNet footprints, and the third
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Figure 8. Methane inversion results in the Barnett Shale, TX using X-STILT, in-sample FootNet, and out-of-sample FootNet footprints.
(Left column) Cumulative footprint influence. (Middle column) Posterior methane flux inferred from the TROPOMI observations. (Right
column) Comparison of observed and simulated methane concentrations from an independent test set using the corresponding posterior
fluxes. Observations were drawn using a consistent seed across experiments. White contours in the left column represent the 60th percentile
of the cumulative footprint influence. The percentage cumulative influence is relative to the cumulative footprint sum for each grid point.

with out-of-sample FootNet footprints. In the Bay Area, both
in-sample and out-of-sample FootNet outperformed STILT
when evaluated against withheld CO2 observations. In the
Barnett Shale, FootNet performed comparably to X-STILT.
These results demonstrate that FootNet v3 generalizes ro-
bustly across the CONUS region and does not require re-
training to support high-quality flux inversions. These results
strongly suggest that the FootNet model is robustly trained
and generalizes well across the entire CONUS region and
beyond. The consistency of the identified features and their
importance in atmospheric transport indicates that FootNet is
learning physically meaningful drivers of atmospheric trans-
port and, as such, it is able to extrapolate to out-of-sample
footprints with high fidelity. These findings show that ma-
chine learning models can learn the underlying physical re-
lationships governing atmospheric transport, which allows

them to extrapolate to out-of-sample scenarios. This frame-
work used to develop the FootNet model can conceivably be
used to emulate larger continental-scale transport. However,
it may require other input features to better represent large-
scale processes.

FootNet’s ability to compute footprints in near-real time
opens the door to scalable, low-latency GHG inversion sys-
tems capable of ingesting large volumes of in situ and re-
mote sensing data. This work overcomes a critical compu-
tational bottleneck and paves the way for widespread de-
ployment of flux inversion frameworks to support timely, ac-
tionable GHG monitoring across sectors and regions. Future
extensions may focus on improving model interpretability,
supporting probabilistic footprint estimates, and expanding
training to include global domains. Nonetheless, the present
results demonstrate that machine learning emulators can en-
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Figure 9. Top six input features ranked by importance using the Permute-and-Predict (PaP) method. Features are sorted by their relative
impact on model loss when permuted. Surface and column models show consistent ranking patterns. Suffixes on the variable names indicate
the timestep (e.g., “V10M t0H” means the v-component of the 10 m winds at the receptor time whereas “V10M t-6H” is from 6 h before the
receptor time).

able high fidelity footprints on-the-fly within a flux inversion.
These emulators can further meet the accuracy and general-
ization demands of operational inversion systems and, for the
first time, achieve out-of-sample transport fidelity sufficient
for scientific and policy applications.

Appendix A: Description of flux inversions

We performed a high-resolution hourly surface CO2 flux
inversion over the San Francisco Bay Area using hourly
BEACO2N CO2 data from 2 February to 5 May 2020, includ-
ing a 36 h buffer on either end of the analysis window. We
used a Bayesian framework across a 1× 1 km2 grid for this
CO2 urban flux inversion. The prior emissions were adapted
from previous studies (McDonald et al., 2014; Turner et al.,
2016, 2020; Dadheech et al., 2025). The state vector con-
sisted of 15.4 millions elements, representing hourly average
fluxes across space and time. We used the Kronecker product
decomposition of spatiotemporal covariance to construct the
prior error covariance matrix B (Yadav and Michalak, 2013).
We assumed a 50 % relative error for each state vector el-
ement with correlation lengths of 5 h, one day, and 5 km.
The measurement error, background concentration & error
are adapted from Turner et al. (2020). The correlation lengths
of 1 h and 2 km were used for the off-diagonal terms of the
observational error covariance matrix.

A high-resolution, column-averaged methane flux inver-
sion was performed over the Barnett Shale using daily

TROPOMI retrievals from 1 February to 30 April 2020, in-
cluding a 7 d buffer on either end of the analysis window.
The inversion was conducted using a Bayesian framework
to optimize methane fluxes across a 1× 1 km2 grid. The
prior emissions were based on the 2018 EPA gridded anthro-
pogenic methane inventory (Maasakkers et al., 2023), down-
scaled from native resolution to 1 km using spatial disaggre-
gation. These included emissions from fossil fuel production,
waste, and agriculture. Biogenic or natural sources were ex-
cluded. The state vector consisted of 7.4 million elements,
representing daily average fluxes across space and time. The
prior error covariance matrix B was constructed as a sepa-
rable spatiotemporal covariance using a Kronecker product
decomposition (Yadav and Michalak, 2013), with 50 % rela-
tive error applied to each state vector element and 7 d tempo-
ral and 5 km spatial correlation lengths. This setup yields a
smooth and physically plausible prior while remaining com-
putationally tractable. We used TROPOMI methane mixing
ratio precision data as measurement uncertainties, and 7 d &
50 km of correlation lengths for the off-diagonal terms of the
observational error covariance matrix. For simplicity, we as-
sumed the model error is equal to the measurement error. The
inversion domain includes a buffer to reduce the impact of
the boundary conditions. To estimate the background column
concentration and uncertainties for each observation, we im-
plemented a directional sectoring scheme:

https://doi.org/10.5194/acp-26-427-2026 Atmos. Chem. Phys., 26, 427–441, 2026



438 N. Dadheech and A. J. Turner: Simulating out-of-sample atmospheric transport

– The inversion domain was surrounded by eight az-
imuthal sectors.

– For each TROPOMI observation, the sector aligned
with the prevailing wind direction was selected based
on HRRR-derived wind fields.

– The mean methane concentration from TROPOMI pix-
els in that upwind sector (outside the inversion domain)
was used as the background.

– The standard deviation of methane concentration from
TROPOMI pixels in that upwind sector (outside the
inversion domain) was used as the background uncer-
tainty.

Wind direction and trajectory length were determined us-
ing a simple back-trajectory estimate based on particle travel
time at the mean wind speed. Each TROPOMI ground pixel
was divided into 1× 1 km2 subpixels to account for its
spatial footprint. For each subpixel, we computed source-
receptor relationships (footprints) using one of three models:
X-STILT (baseline), in-sample FootNet, out-of-sample Foot-
Net (see Fig. 2). The subpixel-level footprints were then ag-
gregated to the native TROPOMI pixel resolution. Figure A1
shows this process. All three inversions used identical obser-
vational and prior configurations to isolate differences due to
the transport model.

Figure A1. Construction of the TROPOMI footprint at 1× 1 km2 spatial resolution. Red stars indicate the bounding box and center of the
TROPOMI pixel. Light blue boxes are 1× 1 km2 grid cells within the TROPOMI bounding box. Left panel shows a X-STILT footprint
for a single 1× 1 km2 subpixel within the TROPOMI bounding box. Right panel shows the average footprint for all subpixels within the
TROPOMI bounding box. The average footprint gives a lower maximum sensitivity but distributes it over a wide region. We also observe a
gradient across the TROPOMI bounding box with increased sensitivity on the upwind (Northern) edge.
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Appendix B: Gaussian plume model

The Gaussian plume model is adapted from Nassar et al.
(2017), and below are the equations we used to compute the
Gaussian plume:

V (x,y)=
F

√
2πσy(x)u

e
−1
2

(
y

σy (x)

)2

(B1)

σy(x)= a(
x

xo
)0.894 (B2)

where V is the vertical column in g m−2 at and upwind of
the receptor. The x direction is parallel to the reversed wind
direction, and the y direction is perpendicular to the wind di-
rection. F is the emission rate in g s−1, which can be assumed
as a constant (here we assumed F = 1). u is the wind speed,
σy is the standard deviation in the y direction. xo= 1000 m
is a characteristic length, and a is the atmospheric stability
parameter, which we determine by classifying a source en-
vironment by the Pasquill-Gifford stability (Pasquill, 1961;
Nassar et al., 2017).

Code availability. The code for this study is available at https:
//github.com/nd349/FootNet (last access: 16 July 2025) and
https://doi.org/10.5281/zenodo.16010441 (Dadheech and Turner,
2025a). The basic tutorials on how to use the FootNet models
are available at this website: https://footnet-uw.github.io/index.html
(last access: 31 December 2025).

Data availability. CO2 data are available at http://beacon.
berkeley.edu/Sites.aspx (last access: 31 December 2025; Shuster-
man et al., 2016). TROPOMI methane data are available at https://
dataspace.copernicus.eu/ (last access: 31 December 2025; Veefkind
et al., 2012). NOAA HRRR data is available at https://rapidrefresh.
noaa.gov/hrrr/ (last access: 31 December 2025). 50 GB of example
training was uploaded to https://doi.org/10.5281/zenodo.16011454
(Dadheech and Turner, 2025b).
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