Articles | Volume 25, issue 15
https://doi.org/10.5194/acp-25-8427-2025
https://doi.org/10.5194/acp-25-8427-2025
Research article
 | 
01 Aug 2025
Research article |  | 01 Aug 2025

Characteristics of boundary layer turbulence energy budget in Shenzhen area based on coherent wind lidar observations

Jinhong Xian, Zongxu Qiu, Huayan Rao, Zhigang Cheng, Xiaoling Lin, Chao Lu, Honglong Yang, and Ning Zhang

Related authors

Turbulent energy budget analysis based on coherent wind lidar observations
Jinhong Xian, Zongxu Qiu, Hongyan Luo, Yuanyuan Hu, Xiaoling Lin, Chao Lu, Yan Yang, Honglong Yang, and Ning Zhang
Atmos. Chem. Phys., 25, 441–457, https://doi.org/10.5194/acp-25-441-2025,https://doi.org/10.5194/acp-25-441-2025, 2025
Short summary
Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar
Jinhong Xian, Chao Lu, Xiaoling Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech., 17, 1837–1850, https://doi.org/10.5194/amt-17-1837-2024,https://doi.org/10.5194/amt-17-1837-2024, 2024
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent energy budget analysis based on coherent wind lidar observations
Jinhong Xian, Zongxu Qiu, Hongyan Luo, Yuanyuan Hu, Xiaoling Lin, Chao Lu, Yan Yang, Honglong Yang, and Ning Zhang
Atmos. Chem. Phys., 25, 441–457, https://doi.org/10.5194/acp-25-441-2025,https://doi.org/10.5194/acp-25-441-2025, 2025
Short summary
The Paris low-level jet during PANAME 2022 and its impact on the summertime urban heat island
Jonnathan Céspedes, Simone Kotthaus, Jana Preissler, Clément Toupoint, Ludovic Thobois, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, and Martial Haeffelin
Atmos. Chem. Phys., 24, 11477–11496, https://doi.org/10.5194/acp-24-11477-2024,https://doi.org/10.5194/acp-24-11477-2024, 2024
Short summary
An air quality and boundary layer dynamics analysis of the Los Angeles basin area during the Southwest Urban NOx and VOCs Experiment (SUNVEx)
Edward J. Strobach, Sunil Baidar, Brian J. Carroll, Steven S. Brown, Kristen Zuraski, Matthew Coggon, Chelsea E. Stockwell, Lu Xu, Yelena L. Pichugina, W. Alan Brewer, Carsten Warneke, Jeff Peischl, Jessica Gilman, Brandi McCarty, Maxwell Holloway, and Richard Marchbanks
Atmos. Chem. Phys., 24, 9277–9307, https://doi.org/10.5194/acp-24-9277-2024,https://doi.org/10.5194/acp-24-9277-2024, 2024
Short summary
Equatorial waves resolved by balloon-borne Global Navigation Satellite System radio occultation in the Strateole-2 campaign
Bing Cao, Jennifer S. Haase, Michael J. Murphy, M. Joan Alexander, Martina Bramberger, and Albert Hertzog
Atmos. Chem. Phys., 22, 15379–15402, https://doi.org/10.5194/acp-22-15379-2022,https://doi.org/10.5194/acp-22-15379-2022, 2022
Short summary
Wind lidars reveal turbulence transport mechanism in the wake of a tree
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268, https://doi.org/10.5194/acp-22-2255-2022,https://doi.org/10.5194/acp-22-2255-2022, 2022
Short summary

Cited articles

Barman, N., Borgohain, A., Kundu, S. S., Roy, R., Saha, B., Solanki, R., Kumar, N., and Raju, P. L. N.: Daytime Temporal Variation of Surface-Layer Parameters and Turbulence Kinetic Energy Budget in Topographically Complex Terrain Around Umiam, India, Bound.-Lay. Meteorol., 172, 149–166, https://doi.org/10.1007/s10546-019-00443-6, 2019. 
Canut, G., Couvreux, F., Lothon, M., Legain, D., Piguet, B., Lampert, A., Maurel, W., and Moulin, E.: Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon, Atmos. Meas. Tech., 9, 4375–4386, https://doi.org/10.5194/amt-9-4375-2016, 2016. 
Caughey, S. J. and Wyngaard, J. C.: Turbulence kinetic-energy budget in convective conditions, Q. J. Roy. Meteor. Soc., 105, 231–239, 1979. 
Chou, S. H., Atlas, D., and Yeh, E. N.: Turbulence in a convective marine atmospheric boundary-layer, J. Atmos. Sci., 43, 547–564, https://doi.org/10.1175/1520-0469(1986)043<0547:TIACMA>2.0.CO;2, 1986. 
Darbieu, C., Lohou, F., Lothon, M., Vilà-Guerau de Arellano, J., Couvreux, F., Durand, P., Pino, D., Patton, E. G., Nilsson, E., Blay-Carreras, E., and Gioli, B.: Turbulence vertical structure of the boundary layer during the afternoon transition, Atmos. Chem. Phys., 15, 10071–10086, https://doi.org/10.5194/acp-15-10071-2015, 2015. 
Download
Short summary
We studied how turbulence kinetic energy (TKE) changes in the lower atmosphere over Shenzhen, focusing on its role in weather and climate. Using advanced wind lidar technology, we tracked how TKE varies with height and across seasons. We found that heat near the ground drives turbulence, while wind effects become stronger higher up. Our results help improve weather and climate models by providing better data on how turbulence behaves in the atmosphere, aiding understanding of climate change.
Share
Altmetrics
Final-revised paper
Preprint