Articles | Volume 25, issue 14
https://doi.org/10.5194/acp-25-8043-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-8043-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbonyl compounds from typical combustion sources: emission characteristics, influencing factors, and their contribution to ozone formation
Yanjie Lu
Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Xinxin Feng
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Yanli Feng
CORRESPONDING AUTHOR
Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Minjun Jiang
Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Yu Peng
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Tian Chen
Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
Related authors
No articles found.
Jingwen Dai, Kun Zhang, Yanli Feng, Xin Yi, Rui Li, Jin Xue, Qing Li, Lishu Shi, Jiaqiang Liao, Yanan Yi, Fangting Wang, Liumei Yang, Hui Chen, Ling Huang, Jiani Tan, Yangjun Wang, and Li Li
Atmos. Chem. Phys., 25, 7467–7484, https://doi.org/10.5194/acp-25-7467-2025, https://doi.org/10.5194/acp-25-7467-2025, 2025
Short summary
Short summary
Oxygenated volatile organic compounds (OVOCs) are important ozone (O3) precursors. However, most O3 formation analysis based on the box model (OBM) does not include any OVOC constraint. To access the interference of OVOCs with O3 simulation, this study presents results from a field campaign and OBM analysis. Our results indicate that no OVOC constraint in the OBM can lead to overestimation of OVOCs, free radicals, and O3.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025, https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Short summary
Intermediate-volatility/semi-volatile organic compounds in gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low sulfur to ultra-low sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes in conjunction with the ratio of octadecanoic to tetradecanoic could be considered potential tracers for heavy fuel oil exhausts.
Hongxing Jiang, Yuanghang Deng, Yunxi Huo, Fengwen Wang, Yingjun Chen, and Hai Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2264, https://doi.org/10.5194/egusphere-2025-2264, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We combined the use of a series of online and offline high-resolution mass spectrometer to characterize the chemical composition and sources of organic aerosols in a background site of south China from bulk to molecular levels. We suggested that anthropogenic source dominated the OA origins, and the gas-phase and particle-phase oxidation processes are conducive to the formation of sulfur-containing and nitrogen-containing compounds, respectively.
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Zeyu Sun, Zheng Zong, Yang Tan, Chongguo Tian, Zeyu Liu, Fan Zhang, Rong Sun, Yingjun Chen, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 12851–12865, https://doi.org/10.5194/acp-23-12851-2023, https://doi.org/10.5194/acp-23-12851-2023, 2023
Short summary
Short summary
This is the first report of ship-emitted nitrogen stable isotope composition (δ15N) of nitrogen oxides (NOx). The results showed that δ15N–NOx from ships was −18.5 ± 10.9 ‰ and increased monotonically with tightening emission regulations. The selective catalytic reduction system was the most vital factor. The temporal variation in δ15N–NOx was evaluated and can be used to select suitable δ15N–NOx for a more accurate assessment of the contribution of ship-emitted exhaust to atmospheric NOx.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Jiao Tang, Jiaqi Wang, Guangcai Zhong, Hongxing Jiang, Yangzhi Mo, Bolong Zhang, Xiaofei Geng, Yingjun Chen, Jianhui Tang, Congguo Tian, Surat Bualert, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, https://doi.org/10.5194/acp-21-11337-2021, 2021
Short summary
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
Jianzhong Sun, Yuzhe Zhang, Guorui Zhi, Regina Hitzenberger, Wenjing Jin, Yingjun Chen, Lei Wang, Chongguo Tian, Zhengying Li, Rong Chen, Wen Xiao, Yuan Cheng, Wei Yang, Liying Yao, Yang Cao, Duo Huang, Yueyuan Qiu, Jiali Xu, Xiaofei Xia, Xin Yang, Xi Zhang, Zheng Zong, Yuchun Song, and Changdong Wu
Atmos. Chem. Phys., 21, 2329–2341, https://doi.org/10.5194/acp-21-2329-2021, https://doi.org/10.5194/acp-21-2329-2021, 2021
Short summary
Short summary
Brown carbon (BrC) emission factors from household biomass fuels were measured with an integrating sphere optics approach supported by iterative calculations. A novel algorithm to directly estimate the absorption contribution of BrC relative to that of BrC + black carbon (FBrC) was proposed based purely on the absorption exponent (AAE)
(FBrC = 0.5519 lnAAE + 0.0067). The FBrC for household biomass fuels was as high as 50.8 % across the strongest solar spectral range of 350−850 nm.
Jiao Tang, Jun Li, Tao Su, Yong Han, Yangzhi Mo, Hongxing Jiang, Min Cui, Bin Jiang, Yingjun Chen, Jianhui Tang, Jianzhong Song, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, https://doi.org/10.5194/acp-20-2513-2020, 2020
Short summary
Short summary
We investigated the light absorption, fluorescence, and molecular composition of dissolved organic carbon from the simulated combustion of biomass and coal and vehicle emissions with UV–vis spectra, EEM-PARAFAC, and FT-ICR MS. We observed high light absorption capacity from source emissions, and fluorescence spectra and molecular structures varied by source. We concluded that an EEM- and molecular-composition-based methodology could be helpful in the source apportionment of atmospheric aerosols.
Fan Zhang, Hai Guo, Yingjun Chen, Volker Matthias, Yan Zhang, Xin Yang, and Jianmin Chen
Atmos. Chem. Phys., 20, 1549–1564, https://doi.org/10.5194/acp-20-1549-2020, https://doi.org/10.5194/acp-20-1549-2020, 2020
Short summary
Short summary
Particulate matter (PM) emitted from ships has gained more attention in recent decades. Organic matter, elemental carbon, water-soluble ions and heavy metals in PM and particle numbers are the main points. However, studies of detailed chemical compositions in particles with different size ranges emitted from ships are in shortage. This study could bring new and detailed measurement data into the field of size-segregated particles from ships and be of great source emission interest.
Min Cui, Cheng Li, Yingjun Chen, Fan Zhang, Jun Li, Bin Jiang, Yangzhi Mo, Jia Li, Caiqing Yan, Mei Zheng, Zhiyong Xie, Gan Zhang, and Junyu Zheng
Atmos. Chem. Phys., 19, 13945–13956, https://doi.org/10.5194/acp-19-13945-2019, https://doi.org/10.5194/acp-19-13945-2019, 2019
Short summary
Short summary
Refined source apportionment is urgently needed but hard to achieve due to a lack of specific biomarkers. Recently, Fourier transform ion cyclotron resonance mass spectrometry has been used to analyse the probable chemical structure of polar organic matter emitted from off-road engines. We found more condensed aromatic rings in S-containing compounds for HFO-fueled vessels, while more abundant aliphatic chains were observed in emissions from diesel equipment.
Kangning Li, Xingnan Ye, Hongwei Pang, Xiaohui Lu, Hong Chen, Xiaofei Wang, Xin Yang, Jianmin Chen, and Yingjun Chen
Atmos. Chem. Phys., 18, 15201–15218, https://doi.org/10.5194/acp-18-15201-2018, https://doi.org/10.5194/acp-18-15201-2018, 2018
Short summary
Short summary
Temporal variation in the hygroscopicity and its correlation with the mixing state of ambient BC particles were studied using a HTDMA–SP2 system. Secondary organic carbon formation and condensation of nitrates were mainly responsible for the changes of hygroscopicity of BC particles during daytime and nighttime, respectively. Different atmospheric aging processes led to the change of BC particles' mixing states, which play a fundamental role in determining their hygroscopicity.
Di Liu, Matthias Vonwiller, Jun Li, Junwen Liu, Sönke Szidat, Yanlin Zhang, Chongguo Tian, Yinjun Chen, Zhineng Cheng, Guangcai Zhong, Pingqing Fu, and Gan Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-295, https://doi.org/10.5194/acp-2018-295, 2018
Revised manuscript not accepted
Di Liu, Jun Li, Zhineng Cheng, Guangcai Zhong, Sanyuan Zhu, Ping Ding, Chengde Shen, Chongguo Tian, Yingjun Chen, Guorui Zhi, and Gan Zhang
Atmos. Chem. Phys., 17, 11491–11502, https://doi.org/10.5194/acp-17-11491-2017, https://doi.org/10.5194/acp-17-11491-2017, 2017
Short summary
Short summary
To elucidate the carbon sources of air pollution, source apportionment was conducted using radiocarbon and unique molecular organic tracers during the beginning of winter 2013 in 10 Chinese cities. The results indicated that non-fossil-fuel (NF) emissions were predominant. During haze episodes, there were no dramatic changes in the carbon source or composition in the cities under study, but the contribution of primary OC from both fossil fuel and NF increased significantly.
Min Cui, Yingjun Chen, Yanli Feng, Cheng Li, Junyu Zheng, Chongguo Tian, Caiqing Yan, and Mei Zheng
Atmos. Chem. Phys., 17, 6779–6795, https://doi.org/10.5194/acp-17-6779-2017, https://doi.org/10.5194/acp-17-6779-2017, 2017
Short summary
Short summary
PM emitted from diesel vehicles has a severe impact on air quality and human health. However, characteristics of PM from diesel vehicles, particularly measured under real-world condition, are scarce. In this study, 6 excavators and 5 trucks were tested to characterize constituents of PM. PM emission factor (EFPM) and compositions were affected by fuel quality, operating modes and emission standards. Moreover, EFPM and risk of carcinogenic for excavators were 1.7 and 31 fold of those for trucks.
Jianzhong Sun, Guorui Zhi, Regina Hitzenberger, Yingjun Chen, Chongguo Tian, Yayun Zhang, Yanli Feng, Miaomiao Cheng, Yuzhe Zhang, Jing Cai, Feng Chen, Yiqin Qiu, Zhiming Jiang, Jun Li, Gan Zhang, and Yangzhi Mo
Atmos. Chem. Phys., 17, 4769–4780, https://doi.org/10.5194/acp-17-4769-2017, https://doi.org/10.5194/acp-17-4769-2017, 2017
Short summary
Short summary
This paper investigates the emission factors and the light absorption properties of brown carbon (BrC) from China’s household coal burning. Seven coals of various ranks were burned in four typical stoves as both chunk and briquette styles. The optical integrating sphere (IS) method was employed to quantify BrC and black carbon (BC). We conclude that, in the scenario of current household coal burning in China, solar light absorption by BrC accounts for 26.5 % of the total absorption.
Zheng Zong, Xiaoping Wang, Chongguo Tian, Yingjun Chen, Lin Qu, Ling Ji, Guorui Zhi, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 16, 11249–11265, https://doi.org/10.5194/acp-16-11249-2016, https://doi.org/10.5194/acp-16-11249-2016, 2016
Short summary
Short summary
We explore the source apportionment of PM2.5 in North China in winter using an original combination method, and coal combustion, biomass burning and vehicle emissions are identified as the largest contributors of PM2.5, accounting for 29.6, 19.3 and 15.8 %, respectively. Biomass burning emission was highlighted in the present study because of its dominant contribution to the PM2.5 burden in the Shandong Peninsula and because it is neglected in the air pollution control program.
Fan Zhang, Yingjun Chen, Chongguo Tian, Diming Lou, Jun Li, Gan Zhang, and Volker Matthias
Atmos. Chem. Phys., 16, 6319–6334, https://doi.org/10.5194/acp-16-6319-2016, https://doi.org/10.5194/acp-16-6319-2016, 2016
Short summary
Short summary
In this study, on-board tests of three offshore vessels in China have been carried out for the first time. Emission factors for gaseous species, PM, and relevant chemical components (OC, EC, metal elements, and water soluble ions) in different operating modes are given, which means a lot for estimating contributions of ships to atmosphere and calculating emission inventories of ships. Additionally, impacts of engine speed on NOx emission factors are discussed for the first time.
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation drivers and photochemical effects of ClNO2 in a coastal city of Southeast China
Significant influence of oxygenated volatile organic compounds on atmospheric chemistry: a case study in a typical industrial city in China
Global ground-based tropospheric ozone measurements: reference data and individual site trends (2000–2022) from the TOAR-II/HEGIFTOM project
Understanding summertime H2O2 chemistry in the North China Plain through observations and modeling studies
Volatile organic compound sources and impacts in an urban Mediterranean area (Marseille, France)
Short-lived organic nitrates in a suburban temperate forest: an indication of efficient assimilation of reactive nitrogen by the biosphere?
Spatiotemporal variations in atmospheric CH4 concentrations and enhancements in northern China based on a comprehensive dataset: ground-based observations, TROPOMI data, inventory data, and inversions
Marine emissions and trade winds control the atmospheric nitrous oxide in the Galapagos Islands
Measurement report: A complex street-level air quality observation campaign in a heavy-traffic area utilizing the multivariate adaptive regression splines method for field calibration of low-cost sensors
The impact of organic nitrates on summer ozone formation in Shanghai, China
Differences in the key volatile organic compound species between their emitted and ambient concentrations in ozone formation
Tracing Ammonia Emission Sources in California's Salton Sea Region: Insights from Airborne Longwave-Infrared Hyperspectral Imaging and Ground Monitoring
Mechanistic insights into chloroacetic acid production from atmospheric multiphase volatile organic compound–chlorine chemistry
Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Characterization of nitrous acid and its potential effects on secondary pollution in the warm season in Beijing urban areas
Vertical changes in volatile organic compounds (VOCs) and impacts on photochemical ozone formation
Airborne quantification of Angolan offshore oil and gas methane emissions
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate natural and anthropogenic changes in oxygen, carbon, and water cycles
Cloud processing of dimethyl sulfide (DMS) oxidation products limits sulfur dioxide (SO2) and carbonyl sulfide (OCS) production in the eastern North Atlantic marine boundary layer
Atmospheric carbonyl compounds are crucial in regional ozone heavy pollution: insights from the Chengdu Plain Urban Agglomeration, China
Evaluating urban methane emissions and their attributes in a megacity, Osaka, Japan, via mobile and eddy covariance measurements
Ozone (O3) observations in Saxony, Germany for 1997–2020: Trends, modelling and implications for O3 control
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: insights from high-resolution measurements and modeling
Measurement report: Exploring the variations in ambient BTEX in urban Europe and their environmental health implications
Seasonal air concentration variability, gas–particle partitioning, precipitation scavenging, and air–water equilibrium of organophosphate esters in southern Canada
Tracing elevated abundance of CH2Cl2 in the subarctic upper troposphere to the Asian Summer Monsoon
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Hemispheric differences in ozone across the stratosphere-troposphere exchange region
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
BVOC and speciated monoterpene concentrations and fluxes at a Scandinavian boreal forest
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Observation and modelling of atmospheric OH and HO2 radicals at a subtropical rural site and implications for secondary pollutants
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Gaojie Chen, Xiaolong Fan, Haichao Wang, Yee Jun Tham, Ziyi Lin, Xiaoting Ji, Lingling Xu, Baoye Hu, and Jinsheng Chen
Atmos. Chem. Phys., 25, 7815–7828, https://doi.org/10.5194/acp-25-7815-2025, https://doi.org/10.5194/acp-25-7815-2025, 2025
Short summary
Short summary
Our study revealed that the nighttime heterogeneous dinitrogen pentoxide (N2O5) uptake process was the major contributor of nitryl chloride (ClNO2) sources, while nitrate photolysis may promote the elevation of daytime ClNO2 concentrations. The rates of alkane oxidation by chlorine (Cl) radical in the early morning exceeded those by OH radical, significantly promoted the formation of ROx and ozone (O3), and further enhanced the atmospheric oxidation capacity levels.
Jingwen Dai, Kun Zhang, Yanli Feng, Xin Yi, Rui Li, Jin Xue, Qing Li, Lishu Shi, Jiaqiang Liao, Yanan Yi, Fangting Wang, Liumei Yang, Hui Chen, Ling Huang, Jiani Tan, Yangjun Wang, and Li Li
Atmos. Chem. Phys., 25, 7467–7484, https://doi.org/10.5194/acp-25-7467-2025, https://doi.org/10.5194/acp-25-7467-2025, 2025
Short summary
Short summary
Oxygenated volatile organic compounds (OVOCs) are important ozone (O3) precursors. However, most O3 formation analysis based on the box model (OBM) does not include any OVOC constraint. To access the interference of OVOCs with O3 simulation, this study presents results from a field campaign and OBM analysis. Our results indicate that no OVOC constraint in the OBM can lead to overestimation of OVOCs, free radicals, and O3.
Roeland Van Malderen, Anne M. Thompson, Debra E. Kollonige, Ryan M. Stauffer, Herman G. J. Smit, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, David W. Tarasick, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Stéphanie Evan, Victoria Flood, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Marco Iarlori, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Glen McConville, Katrin Müller, Tomoo Nagahama, Justus Notholt, Ankie Piters, Natalia Prats, Richard Querel, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
Atmos. Chem. Phys., 25, 7187–7225, https://doi.org/10.5194/acp-25-7187-2025, https://doi.org/10.5194/acp-25-7187-2025, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and is an air pollutant. The time variability of tropospheric ozone is mainly driven by anthropogenic emissions. In this paper, we study the distribution and time variability of ozone from harmonized ground-based observations from five different measurement techniques. Our findings provide clear standard references for atmospheric models and evolving tropospheric ozone satellite data for the 2000–2022 period.
Can Ye, Pengfei Liu, Chaoyang Xue, Chenglong Zhang, Zhuobiao Ma, Chengtang Liu, Junfeng Liu, Keding Lu, Yujing Mu, and Yuanhang Zhang
Atmos. Chem. Phys., 25, 6991–7005, https://doi.org/10.5194/acp-25-6991-2025, https://doi.org/10.5194/acp-25-6991-2025, 2025
Short summary
Short summary
This study investigates H2O2 chemistry in rural North China. The observed H2O2 showed distinct diurnal variations influenced by photochemical reactions. A box model revealed that H2O2 is primarily produced by HO2 recombination and removed mainly via particle uptake. Reductions in NOx, PM2.5, and alkanes raised H2O2 levels, while cutting alkenes, aromatics, CO, and HONO lowered them. A dual strategy focusing on VOC and NOx control is essential to reduce both H2O2 and ozone pollution.
Marvin Dufresne, Thérèse Salameh, Thierry Leonardis, Grégory Gille, Alexandre Armengaud, and Stéphane Sauvage
Atmos. Chem. Phys., 25, 5977–5999, https://doi.org/10.5194/acp-25-5977-2025, https://doi.org/10.5194/acp-25-5977-2025, 2025
Short summary
Short summary
This paper discusses the 18-month-long measurement of non-methane hydrocarbons (NMHCs) in Marseille, where there was no measurement since early 2000, despite the impact of NMHCs on air quality and climate. Traffic-related sources are the largest contributor to NMHC concentrations in Marseille, and shipping strongly contributes to the formation of aerosols. Finally, the Covid-19 lockdown had an impact on NMHC concentrations, reaching a 50 % decrease for traffic-related sources.
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 25, 5893–5909, https://doi.org/10.5194/acp-25-5893-2025, https://doi.org/10.5194/acp-25-5893-2025, 2025
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France, circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for, for example, alkyl nitrates and peroxy nitrates.
Pengfei Han, Ning Zeng, Bo Yao, Wen Zhang, Weijun Quan, Pucai Wang, Ting Wang, Minqiang Zhou, Qixiang Cai, Yuzhong Zhang, Ruosi Liang, Wanqi Sun, and Shengxiang Liu
Atmos. Chem. Phys., 25, 4965–4988, https://doi.org/10.5194/acp-25-4965-2025, https://doi.org/10.5194/acp-25-4965-2025, 2025
Short summary
Short summary
Methane (CH4) is a potent greenhouse gas. Northern China contributes a large proportion of CH4 emissions, yet large observation gaps exist. Here we compiled a comprehensive dataset, which is publicly available, that includes ground-based, satellite-based, inventory, and modeling results to show the CH4 concentrations, enhancements, and spatial–temporal variations. The data can benefit the research community and policy-makers for future observations, atmospheric inversions, and policy-making.
Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin
Atmos. Chem. Phys., 25, 4703–4718, https://doi.org/10.5194/acp-25-4703-2025, https://doi.org/10.5194/acp-25-4703-2025, 2025
Short summary
Short summary
We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from the coastal upwelling systems of Peru and Chile.
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, Igor Esau, and Jaroslav Resler
Atmos. Chem. Phys., 25, 4477–4504, https://doi.org/10.5194/acp-25-4477-2025, https://doi.org/10.5194/acp-25-4477-2025, 2025
Short summary
Short summary
The study explored urban air quality in Prague using low-cost sensors and highlighted the multivariate adaptive regression splines (MARS) correction method's effectiveness in enhancing accuracy. Results showed traffic's impact on nitrogen dioxide levels and atmospheric dynamics on particulate matter. The research confirmed MARS-corrected sensors as cost-effective for monitoring, despite challenges like sensor ageing and data quality control.
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
Atmos. Chem. Phys., 25, 3905–3918, https://doi.org/10.5194/acp-25-3905-2025, https://doi.org/10.5194/acp-25-3905-2025, 2025
Short summary
Short summary
This study reports an observation of organic nitrate (including total peroxy nitrates and total alkyl nitrates) in Shanghai, China, during the summer of 2021, by homemade thermal dissociation cavity-enhanced absorption spectroscopy (TD-CEAS; Atmos. Meas. Tech., 14, 4033–4051, 2021). The distribution of organic nitrates and their effects on local ozone production are analyzed based on field observations in conjunction with model simulations.
Xudong Zheng and Shaodong Xie
Atmos. Chem. Phys., 25, 3807–3820, https://doi.org/10.5194/acp-25-3807-2025, https://doi.org/10.5194/acp-25-3807-2025, 2025
Short summary
Short summary
To reduce uncertainties in identifying the key volatile organic compounds (VOCs) in ozone (O3) formation from ambient concentrations, this study comprehensively calculates the emitted VOC concentrations during both nighttime and daytime using the nitrate radical, O3, and hydroxyl radical reaction rates and ambient VOC concentrations. Based on the emitted concentrations, isoprene is one of the top three species contributing to O3 formation, which may be overlooked in observed concentrations.
Sina Hasheminassab, David M. Tratt, Olga V. Kalashnikova, Clement S. Chang, Morad Alvarez, Kerry N. Buckland, Michael J. Garay, Francesca M. Hopkins, Eric R. Keim, Le Kuai, Yaning Miao, Payam Pakbin, William C. Porter, and Mohammad H. Sowlat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1378, https://doi.org/10.5194/egusphere-2025-1378, 2025
Short summary
Short summary
Ammonia (NH3) is a key air pollutant linked to fine particle pollution, yet its sources remain poorly understood. Using airborne infrared imaging and ground sensors, we mapped NH3 emissions in California’s Salton Sea region with unprecedented detail. We found high emissions from farms, geothermal plants, and waste sites, including sources missing from inventories. These findings highlight the need for better NH3 monitoring to improve air quality models and guide pollution reduction strategies.
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
Atmos. Chem. Phys., 25, 3753–3764, https://doi.org/10.5194/acp-25-3753-2025, https://doi.org/10.5194/acp-25-3753-2025, 2025
Short summary
Short summary
Our field campaigns observed a strong diel pattern of chloroacetic acid as well as a strong correlation between its level and that of reactive chlorine species at a coastal site. Using quantum chemical calculations and box model simulation with an updated Master Chemical Mechanism, we found that the formation pathway of chloroacetic acid involved multiphase processes. Our study enhances understanding of atmospheric organic chlorine chemistry and emphasizes the importance of multiphase reactions.
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025, https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary
Short summary
A full suite of radical measurements (OH, HO2, RO2, and kOH) was established to accurately elucidate the limitations of oxidation in a chemically complex atmosphere. Sensitivity tests revealed that the incorporation of complex processes enabled a balance in both radical concentrations and coordinate ratios, effectively addressing the deficiency in the ozone generation mechanism. The full-chain radical detection bridged the gap between the photochemistry and the intensive oxidation level.
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025, https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary
Short summary
We considered two potential influencing factors of heavy-duty diesel vehicle emissions that are rarely mentioned in the literature: cumulative mileage and ambient temperatures. The results suggest that prolonged use of heavy-duty diesel vehicles and low ambient temperatures leads to reduced engine combustion efficiency, which in turn increases tailpipe emissions significantly.
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Jiaqi Wang, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
Atmos. Chem. Phys., 25, 2551–2568, https://doi.org/10.5194/acp-25-2551-2025, https://doi.org/10.5194/acp-25-2551-2025, 2025
Short summary
Short summary
As a key source of hydroxyl (OH) radical, nitrous acid (HONO) has attracted much attention for its important role in the atmospheric oxidant capacity (AOC) increase. In this study, we made a comparison of the ambient levels, variation patterns, sources, and formation pathway in the warm season on the basis of continuous intensive observations at an urban site of Beijing. This work highlights the importance of HONO for the AOC in the warm season.
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025, https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were conducted based on a 325 m tall tower in urban Beijing. Vertical changes in the concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
Alina Fiehn, Maximilian Eckl, Magdalena Pühl, Tiziana Bräuer, Klaus-Dirk Gottschaldt, Heinfried Aufmhoff, Lisa Eirenschmalz, Gregor Neumann, Felicitas Sakellariou, Daniel Sauer, Robert Baumann, Guilherme De Aguiar Ventura, Winne Nayole Cadete, Dário Luciano Zua, Manuel Xavier, Paulo Correia, and Anke Roiger
EGUsphere, https://doi.org/10.5194/egusphere-2025-635, https://doi.org/10.5194/egusphere-2025-635, 2025
Short summary
Short summary
In September 2022, the METHANE-To-Go Africa (MTGA) campaign, part of UNEP’s IMEO Methane Science Studies, conducted the first CH₄ emissions measurements from West Africa’s offshore oil and gas sector. Using an aircraft-based mass balance method, emissions from Angolan offshore facilities were quantified. Older, low-producing facilities showed higher emissions than newer ones. High-emission events were observed, highlighting the need for targeted monitoring and mitigation efforts.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
Atmos. Chem. Phys., 25, 1965–1987, https://doi.org/10.5194/acp-25-1965-2025, https://doi.org/10.5194/acp-25-1965-2025, 2025
Short summary
Short summary
The 18O/16O ratio of atmospheric oxygen, δatm(18O), is higher than that of ocean water due to isotopic effects during biospheric activities. This is known as the Dole–Morita effect, and its millennial-scale variations are recorded in ice cores. However, small variations of δatm(18O) in the present day have never been detected so far. This paper presents the first observations of diurnal, seasonal, and secular variations in δatm(18O) and applies them to evaluate oxygen, carbon, and water cycles.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Shengqian Zhou, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
Atmos. Chem. Phys., 25, 1931–1947, https://doi.org/10.5194/acp-25-1931-2025, https://doi.org/10.5194/acp-25-1931-2025, 2025
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the eastern North Atlantic. We use an observationally constrained box model to show that cloud loss is the dominant sink of HPMTF in this region over 6 weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
Atmos. Chem. Phys., 25, 1899–1916, https://doi.org/10.5194/acp-25-1899-2025, https://doi.org/10.5194/acp-25-1899-2025, 2025
Short summary
Short summary
We studied carbonyl compounds' role in ozone pollution in the Chengdu Plain Urban Agglomeration, China. During heavy pollution in August 2019, we measured carbonyls at nine sites and analyzed their impact. Areas with higher carbonyl levels, like Chengdu, had worse ozone pollution. While their abundance matters, chemical reactions with other pollutants are the main drivers. Our findings show regional cooperation is vital to reducing ozone pollution effectively.
Masahito Ueyama, Taku Umezawa, Yukio Terao, Mark Lunt, and James Lawrence France
EGUsphere, https://doi.org/10.5194/egusphere-2024-3926, https://doi.org/10.5194/egusphere-2024-3926, 2025
Short summary
Short summary
Methane (CH4) emissions were measured in Megacity Osaka, Japan, using mobile and eddy covariance methods. The CH4 emissions were much higher than those reported in local inventories, with natural gas contributing up to 74 % of the emissions. Several CH4 sources not accounted for in current inventories were identified. These results emphasize the need for more comprehensive emissions tracking in urban areas to enhance climate change mitigation efforts.
Yaru Wang, Dominik van Pinxteren, Andreas Tilgner, Erik Hans Hoffmann, Max Hell, Susanne Bastian, and Hartmut Herrmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4202, https://doi.org/10.5194/egusphere-2024-4202, 2025
Short summary
Short summary
Tropospheric ground-level ozone (O3) is a global air-quality pollutant and greenhouse gas. Long-term O3 trends from 16 stations in Saxony, Germany, were compared over three periods, revealing worsened O3 pollution over the last decade. O3 formation has been volatile organic compound (VOC)-limited at traffic and urban sites for the past 20 years. To mitigate O3 pollution, moderate nitrogen oxides and additional VOC controls, particularly in solvent use, should be prioritized in the coming years.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
Atmos. Chem. Phys., 25, 905–921, https://doi.org/10.5194/acp-25-905-2025, https://doi.org/10.5194/acp-25-905-2025, 2025
Short summary
Short summary
Box modeling with the Master Chemical Mechanism (MCM) was used to explore summertime peroxyacetyl nitrate (PAN) formation and its link to aerosol pollution under high-ozone conditions. The MCM model is effective in the study of PAN photochemical formation and performed better during the clean period than the haze period. Machine learning analysis identified ammonia, nitrate, and fine particulate matter as the top three factors contributing to simulation bias.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Markus Jesswein, Valentin Lauther, Nicolas Emig, Peter Hoor, Timo Keber, Hans-Christoph Lachnitt, Linda Ort, Tanja Schuck, Johannes Strobel, Ronja Van Luijt, C. Michael Volk, Franziska Weyland, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3946, https://doi.org/10.5194/egusphere-2024-3946, 2025
Short summary
Short summary
The study investigates transport within the Asian Summer Monsoon, focussing on how CH2Cl2 reaches the subarctic tropopause region. Using data from the PHILEAS campaign in 2023, events with increased mixing ratios were detected. Their origin, the transport paths to the tropopause region and the potential entry into the stratosphere were analysed. The East Asian Summer Monsoon was identified as the main transport pathway, with only a small contribution to the stratosphere in the following days.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024, https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were conducted over paddy fields in the Huaihe River Basin. Consecutive peaks in HONO and NO fluxes suggest a potentially enhanced release of HONO and NO due to soil tillage, whereas waterlogged soil may inhibit microbial nitrification processes following irrigation. Notably, biological processes and light-driven NO2 reactions at the surface may serve as sources of HONO and influence the local HONO budget during rotary tillage.
Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, and Susanne Rohs
EGUsphere, https://doi.org/10.5194/egusphere-2024-3719, https://doi.org/10.5194/egusphere-2024-3719, 2024
Short summary
Short summary
We explored differences in ozone levels between the Northern and Southern Hemispheres in the Stratosphere-troposphere exchange region. Using unique data from a research aircraft, we found significantly lower ozone levels (with stratospheric character) in the Southern Hemisphere, especially during years of severe ozone depletion. A Sudden Stratospheric Warming event in 2019 increased Southern Hemisphere ozone levels, highlighting the relationship between atmospheric events and ozone distribution.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Ross Charles Petersen, Thomas Holst, Cheng Wu, Radovan Krejci, Jeremy Chan, Claudia Mohr, and Janne Rinne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3410, https://doi.org/10.5194/egusphere-2024-3410, 2024
Short summary
Short summary
Ecosystem-scale emissions of biogenic volatile organic compounds (BVOCs) are important for atmospheric chemistry. Here we investigate boreal BVOC fluxes from a forest in central Sweden. BVOC fluxes were measured above-canopy using proton-transfer-reaction mass spectrometry, while compound-specific monoterpene (MT) fluxes were assessed using a concentration gradient method. We also evaluate the impact of chemical degradation on observed sesquiterpene (SQT) and nighttime MT fluxes.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3210, https://doi.org/10.5194/egusphere-2024-3210, 2024
Short summary
Short summary
We measured ambient OH and HO2 concentrations at a subtropical rural site and compared our observations with model results. During warm periods, the model overestimated the concentrations of OH and HO2, leading to overestimation of ozone and nitric acid production. Our findings highlight the need to better understand how OH and HO2are formed and removed, which is important for accurate air quality and climate predictions.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Cited articles
Abdullah, A.: A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol, J. Clean. Prod., 341, 130876, https://doi.org/10.1016/j.jclepro.2022.130876, 2022.
Ban-Weiss, G. A., McLaughlin, J. P., Harley, R. A., Kean, A. J., Grosjean, E., and Grosjean, D.: Carbonyl and Nitrogen Dioxide Emissions From Gasoline- and Diesel-Powered Motor Vehicles, Environ. Sci. Technol., 42, 3944–3950, https://doi.org/10.1021/es8002487, 2008.
Caballero, J. A., Font, R., and Marcilla, A.: Pyrolysis of &-aft lignin: yields and correlations, J. Anal. Appl. Pyrol., 39, 161–183, https://doi.org/10.1016/S0165-2370(96)00965-5, 1997.
Cao, X., Yao, Z., Shen, X., Ye, Y., and Jiang, X.: On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China, Atmos. Environ., 124, 146–155, https://doi.org/10.1016/j.atmosenv.2015.06.019, 2016.
Cao, X., Feng, S., Shen, X., Li, X., Yao, X., and Yao, Z.: The effects of biodiesel blends on real-world carbonyl emissions from diesel trucks, Atmos. Environ., 238, 117726, https://doi.org/10.1016/j.atmosenv.2020.117726, 2020.
Chen, Y., Zhi, G., Feng, Y., Liu, D., Zhang, G., Li, J., Sheng, G., and Fu, J.: Measurements of Black and Organic Carbon Emission Factors for Household Coal Combustion in China: Implication for Emission Reduction, Environ. Sci. Technol., 43, 9495–9500, https://doi.org/10.1021/es9021766, 2009.
Cheng, P., Liu, Z., Feng, Y., Han, Y., Peng, Y., Cai, J., and Chen, Y.: Emission characteristics and formation pathways of carbonyl compounds from the combustion of biomass and their cellulose, hemicellulose, and lignin at different temperatures and oxygen concentrations, Atmos. Environ., 291, 119387, https://doi.org/10.1016/j.atmosenv.2022.119387, 2022.
Chien, S.-M., Huang, Y.-J., Chuang, S.-C., and Yang, H.-H.: Effects of biodiesel blending on particulate and polycyclic aromatic hydrocarbon emissions in nano/ultrafine/fine/coarse ranges from diesel engine, Aerosol Air Qual. Res., 9, 18–31, https://doi.org/10.4209/aaqr.2008.09.0040, 2009.
Corma, A., Huber, G., Sauvanaud, L., and Oconnor, P.: Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network, J. Catal., 257, 163–171, https://doi.org/10.1016/j.jcat.2008.04.016, 2008.
Costagliola, M. A., De Simio, L., Iannaccone, S., and Prati, M. V.: Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends, Appl. Energ., 111, 1162–1171, https://doi.org/10.1016/j.apenergy.2012.09.042, 2013.
Dong, D., Shao, M., Li, Y., Lu, S., Wang, Y., Ji, Z., and Tang, D.: Carbonyl emissions from heavy-duty diesel vehicle exhaust in China and the contribution to ozone formation potential, J. Environ. Sci., 26, 122–128, https://doi.org/10.1016/S1001-0742(13)60387-3, 2014.
Du, Z. and Li, W.: The catalytic effect from alkaline elements on the tar-rich coal pyrolysis, Catalysts, 12, 376, https://doi.org/10.3390/catal12040376, 2022.
Duan, J., Tan, J., Yang, L., Wu, S., and Hao, J.: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing, Atmos. Res., 88, 25–35, https://doi.org/10.1016/j.atmosres.2007.09.004, 2008.
Erickson, M. H., Gueneron, M., and Jobson, B. T.: Measuring long chain alkanes in diesel engine exhaust by thermal desorption PTR-MS, Atmos. Meas. Tech., 7, 225–239, https://doi.org/10.5194/amt-7-225-2014, 2014.
Feng, Y., Xiong, B., Mu, C., and Chen, Y.: Emissions of volatile organic compounds and carbonyl compounds from residential coal combustion in China, J. Shanghai Univ., 14, 79–82, https://doi.org/10.1007/s11741-010-0201-3, 2010.
Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T. R., Davis, L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber, R., Guha, A., Harley, R. A., and Goldstein, A. H.: Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions, P. Natl. Acad. Sci. USA, 109, 18318–18323, https://doi.org/10.1073/pnas.1212272109, 2012.
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., Haddad, I. E., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J., Goldstein, A. H., Harley, R. A., Jimenez, J. L., Pre, S. H., and Robinson, A. L.: Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions, Environ. Sci. Technol., 51, 1074–1093, https://doi.org/10.1021/acs.est.6b04509, 2017.
Go, B. R., Li, Y. J., Huang, D. D., and Chan, C. K.: Aqueous-phase photoreactions of mixed aromatic carbonyl photosensitizers yield more oxygenated, oxidized, and less light-absorbing secondary organic aerosol (SOA) than single systems, Environ. Sci. Technol., 58, 7924–7936, https://doi.org/10.1021/acs.est.3c10199, 2024.
Graboski, M. S. and McCormick, R. L.: Combustion of fat and vegetable oil derived fuels in diesel engines, Prog. Energ. Combust., 24, 125–164, 1998.
Guo, H., Zou, S. C., Tsai, W. Y., Chan, L. Y., and Blake, D. R.: Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong, Atmos. Environ., 45, 2711–2721, https://doi.org/10.1016/j.atmosenv.2011.02.053, 2011.
Guo, J., Li, F., Zhang, H.,Duan, Y., Wang, S., Tan, F., Chen, Y., Lu, F., and Luo, L.: Effects of fuel components and combustion parameters on the formation mechanism and emission characteristics of aldehydes from biodiesel combustion, Renew. Energ., 219, 119474, https://doi.org/10.1016/j.renene.2023.119474, 2023.
He, C., Ge, Y., Tan, J., You, K., Han, X., Wang, J., You, Q., and Shah, A. N.: Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel, Atmos. Environ., 43, 3657–3661, https://doi.org/10.1016/j.atmosenv.2009.04.007, 2009.
He, K., Fu, T., Zhang, B., Xu, H., Sun, J., Zou, H., Zhang, Z., Hang Ho, S. S., Cao, J., and Shen, Z.: Examination of long-time aging process on volatile organic compounds emitted from solid fuel combustion in a rural area of China, Chemosphere, 333, 138957, https://doi.org/10.1016/j.chemosphere.2023.138957, 2023.
He, K., Shen, Z., Zhang, L., Wang, X., Zhang, B., Sun, J., Xu, H., Hang Ho, S. S., and Cao, J.: Emission of intermediate volatile organic compounds from animal dung and coal combustion and its contribution to secondary organic aerosol formation in qinghai-tibet plateau, China, Environ. Sci. Technol., 58, 11118–11127, https://doi.org/10.1021/acs.est.4c02618, 2024.
Ho, K. F., Sai Hang Ho, S., Cheng, Y., Lee, S. C., and Zhen Yu, J.: Real-world emission factors of fifteen carbonyl compounds measured in a Hong Kong tunnel, Atmos. Environ., 41, 1747–1758, https://doi.org/10.1016/j.atmosenv.2006.10.027, 2007.
Hung-Lung, C., Ching-Shyung, H., Shih-Yu, C., Ming-Ching, W., Sen-Yi, M., and Yao-Sheng, H.: Emission factors and characteristics of criteria pollutants and volatile organic compounds (VOCs) in a freeway tunnel study, Sci. Total Environ., 381, 200–211, https://doi.org/10.1016/j.scitotenv.2007.03.039, 2007.
Karavalakis, G., Bakeas, E., and Stournas, S.: Influence of oxidized biodiesel blends on regulated and unregulated emissions from a diesel passenger car, Environ. Sci. Technol., 44, 5306–5312, https://doi.org/10.1021/es100831j, 2010.
Karavalakis, G., Boutsika, V., Stournas, S., and Bakeas, E.: Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions, Sci. Total Environ., 409, 738–747, https://doi.org/10.1016/j.scitotenv.2010.11.010, 2011.
Karavalakis, G., Short, D., Russell, R. L., Jung, H., Johnson, K. C., Asa-Awuku, A., and Durbin, T. D.: Assessing the Impacts of Ethanol and Isobutanol on Gaseous and Particulate Emissions from Flexible Fuel Vehicles, Environ. Sci. Technol., 48, 14016–14024, https://doi.org/10.1021/es5034316, 2014.
Karavalakis, G., Short, D., Vu, D., Russell, R., Hajbabaei, M., Asa-Awuku, A., and Durbin, T. D.: Evaluating the Effects of Aromatics Content in Gasoline on Gaseous and Particulate Matter Emissions from SI-PFI and SIDI Vehicles, Environ. Sci. Technol., 49, 7021–7031, https://doi.org/10.1021/es5061726, 2015.
Krzyzanowski, M.: WHO Air Quality Guidelines for Europe, J. Toxicol. Env. Heal. A, 71, 47–50, https://doi.org/10.1080/15287390701557834, 2008.
Li, Q., Jiang, J., Cai, S., Zhou, W., Wang, S., Duan, L., and Hao, J.: Gaseous ammonia emissions from coal and biomass combustion in household stoves with different combustion efficiencies, Environ. Sci., 3, 98–103, https://doi.org/10.1021/acs.estlett.6b00013, 2016.
Lin, Y.-C., Hsu, K.-H., and Chen, C.-B.: Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel/ultra-low sulfur diesel blends, Energy, 36, 241–248, https://doi.org/10.1016/j.energy.2010.10.045, 2011.
Ling, Z., Xie, Q., Shao, M., Wang, Z., Wang, T., Guo, H., and Wang, X.: Formation and sink of glyoxal and methylglyoxal in a polluted subtropical environment: observation-based photochemical analysis and impact evaluation, Atmos. Chem. Phys., 20, 11451–11467, https://doi.org/10.5194/acp-20-11451-2020, 2020.
Liu, P., Wu, Y., Li, Z., Lv, Z., Zhang, J., Liu, Y., Song, A., Wang, T., Wu, L., Mao, H., and Peng, J.: Tailpipe volatile organic compounds (VOCs) emissions from Chinese gasoline vehicles under different vehicle standards, fuel types, and driving conditions, Atmos. Environ., 323, 120348, https://doi.org/10.1016/j.atmosenv.2024.120348, 2024.
Liu, Z., Feng, Y., Peng, Y., Cai, J., Li, C., Li, Q., Zheng, M., and Chen, Y.: Emission Characteristics and Formation Mechanism of Carbonyl Compounds from Residential Solid Fuel Combustion Based on Real-World Measurements and Tube-Furnace Experiments, Environ. Sci. Technol., 56, 15417–15426, https://doi.org/10.1021/acs.est.2c05418, 2022.
Lou, D., Qi, B., Zhang, Y., and Fang, L.: Study on the emission characteristics of urban buses at different emission standards fueled with biodiesel blends, ACS Omega, 7, 7213–7222, https://doi.org/10.1021/acsomega.1c06992, 2022.
Magnusson, R., Nilsson, C., and Andersson, B.: Emissions of Aldehydes and Ketones from a Two-Stroke Engine Using Ethanol and Ethanol-Blended Gasoline as Fuel, Environ. Sci. Technol., 36, 1656–1664, https://doi.org/10.1021/es010262g, 2002.
Martinet, S., Liu, Y., Louis, C., Tassel, P., Perret, P., Chaumond, A., and André, M.: Euro 6 Unregulated Pollutant Characterization and Statistical Analysis of After-Treatment Device and Driving-Condition Impact on Recent Passenger-Car Emissions, Environ. Sci. Technol., 51, 5847–5855, https://doi.org/10.1021/acs.est.7b00481, 2017.
McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett, J. L., Hao, W. M., Holden, A. S., Kirchstetter, T. W., Malm, W. C., Moosmüller, H., Sullivan, A. P., and Wold, C. E.: Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory, J. Geophys. Res.-Atmos., 114, 2009JD011836, https://doi.org/10.1029/2009JD011836, 2009.
Mellouki, A., Wallington, T. J., and Chen, J.: Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate, Chem. Rev., 115, 3984–4014, https://doi.org/10.1021/cr500549n, 2015.
Miura, K.: Mild conversion of coal for producing valuable chemicals, Fuel Process. Technol., 62, 119–135, https://doi.org/10.1016/S0378-3820(99)00123-X, 2000.
Nelson, P. F., Tibbett, A. R., and Day, S. J.: Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles, Atmos. Environ., 42, 5291–5303, https://doi.org/10.1016/j.atmosenv.2008.02.049, 2008.
Pang, X., Mu, Y., Yuan, J., and He, H.: Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines, Atmos. Environ., 42, 1349–1358, https://doi.org/10.1016/j.atmosenv.2007.10.075, 2008.
Peng, Y., Cai, J., Feng, Y., Jiang, H., and Chen, Y.: Emission characteristic of OVOCs, I/SVOCs, OC and EC from wood combustion at different moisture contents, Atmos. Environ., 298, 119620, https://doi.org/10.1016/j.atmosenv.2023.119620, 2023.
Prokopowicz, A., Zaciera, M., Sobczak, A., Bielaczyc, P., and Woodburn, J.: The Effects of Neat Biodiesel and Biodiesel and HVO Blends in Diesel Fuel on Exhaust Emissions from a Light Duty Vehicle with a Diesel Engine, Environ. Sci. Technol., 49, 7473–7482, https://doi.org/10.1021/acs.est.5b00648, 2015.
Qian, Z., Chen, Y., Liu, Z., Han, Y., Zhang, Y., Feng, Y., Shang, Y., Guo, H., Li, Q., Shen, G., Chen, J., and Tao, S.: Intermediate volatile organic compound emissions from residential solid fuel combustion based on field measurements in rural China, Environ. Sci. Technol., 55, 5689–5700, https://doi.org/10.1021/acs.est.0c07908, 2021.
Russell, A. and Epling, W. S.: Diesel oxidation catalysts, Cataly. Rev., 53, 337–423, 2011.
Saliba, G., Saleh, R., Zhao, Y., Presto, A. A., Lambe, A. T., Frodin, B., Sardar, S., Maldonado, H., Maddox, C., May, A. A., Drozd, G. T., Goldstein, A. H., Russell, L. M., Hagen, F., and Robinson, A. L.: Comparison of gasoline direct-injection (GDI) and port fuel injection (PFI) vehicle emissions: emission certification standards, cold-start, secondary organic aerosol formation potential, and potential climate impacts, Environ. Sci. Technol., 51, 6542–6552, https://doi.org/10.1021/acs.est.6b06509, 2017.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of Emissions from Air Pollution Sources. 3. C1–C29 Organic Compounds from Fireplace Combustion of Wood, Environ. Sci. Technol., 35, 1716–1728, https://doi.org/10.1021/es001331e, 2001.
Sharp, C. A., Howell, S. A., and Jobe, J.: The effect of biodiesel fuels on transient emissions from modern diesel engines, part II unregulated emissions and chemical characterization, SAE Transactions, 109, 1784–1807, 2000.
Shen, G., Yang, Y., Wang, W., Tao, S., Zhu, C., Min, Y., Xue, M., Ding, J., Wang, B., Wang, R., Shen, H., Li, W., Wang, X., and Russell, A. G.: Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China, Environ. Sci. Technol., 44, 7157–7162, https://doi.org/10.1021/es101313y, 2010.
Shen, X.: Heterogeneous reactions of volatile organic compounds in the atmosphere, Atmos. Environ., 68, 297–314, https://doi.org/10.1016/j.atmosenv.2012.11.027, 2013.
Singh, P., Varun, and Chauhan, S. R.: Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review, Renew. Sust. Energ. Rev., 63, 269–291, https://doi.org/10.1016/j.rser.2016.05.069, 2016.
Song, C., Zhao, Z., Lv, G., Song, J., Liu, L., and Zhao, R.: Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol–diesel blend, Chemosphere, 79, 1033–1039, https://doi.org/10.1016/j.chemosphere.2010.03.061, 2010.
Sorokina, A. S., Burov, E. A., Koshelev, V. N., Ivanova, L. V., Shaidullina, G. M., and Rakov, D. V.: Chromatographic methods of investigation of hydrocarbon composition of diesel fuels, Chem. Tech. Fuels Oil+, 57, 770–776, https://doi.org/10.1007/s10553-021-01305-z, 2021.
Tang, G., Chen, X., Li, X., Wang, Y., Yang, Y., Wang, Y., Gao, W., Wang, Y., Tao, M., and Wang, Y.: Decreased gaseous carbonyls in the North China plain from 2004 to 2017 and future control measures, Atmos. Environ., 218, 117015, https://doi.org/10.1016/j.atmosenv.2019.117015, 2019.
Tang, J., Wang, X., Feng, Y., Sheng, G., and Fu, J.: Determination of C1–C10 Carbonyls in the Atmosphere, Chinese J. Anal. Chem., 31, 1468–1472, 2003.
Wang, J., Jin, L., Gao, J., Shi, J., Zhao, Y., Liu, S., Jin, T., Bai, Z., and Wu, C.-Y.: Investigation of speciated VOC in gasoline vehicular exhaust under ECE and EUDC test cycles, Sci. Total Environ., 445, 110–116, https://doi.org/10.1016/j.scitotenv.2012.12.044, 2013.
Wang, S., Dai, G., Yang, H., and Luo, Z.: Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review, Prog. Energ. Combust., 62, 33–86, https://doi.org/10.1016/j.pecs.2017.05.004, 2017.
Wang, S., Yuan, B., Wu, C., Wang, C., Li, T., He, X., Huangfu, Y., Qi, J., Li, X.-B., Sha, Q., Zhu, M., Lou, S., Wang, H., Karl, T., Graus, M., Yuan, Z., and Shao, M.: Oxygenated volatile organic compounds (VOCs) as significant but varied contributors to VOC emissions from vehicles, Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, 2022.
Wang, Y., Cui, J., Qiao, X., Sun, M., and Zhang, J.: Real-world emission characteristics of carbonyl compounds from on-road vehicles in Beijing and Zhengzhou, China, Sci. Total Environ., 916, 170135, https://doi.org/10.1016/j.scitotenv.2024.170135, 2024.
Weisel, C. P., Fiedler, N., Weschler, C. J., Ohman-Strickland, P. A., Mohan, K. R., McNeil, K., and Space, D. R.: Human symptom responses to bioeffluents, short-chain carbonyls/acids, and long-chain carbonyls in a simulated aircraft cabin environment, Indoor Air, 27, 1154–1167, https://doi.org/10.1111/ina.12392, 2017.
Wu, Z., Zhang, Y., Pei, C., Huang, Z., Wang, Y., Chen, Y., Yan, J., Huang, X., Xiao, S., Luo, S., Zeng, J., Wang, J., Fang, H., Zhang, R., Li, S., Fu, X., Song, W., and Wang, X.: Real-world emissions of carbonyls from vehicles in an urban tunnel in south China, Atmos. Environ., 258, 118491, https://doi.org/10.1016/j.atmosenv.2021.118491, 2021.
Xie, G., Chen, H., Zhang, F., Shang, X., Zhan, B., Zeng, L., Mu, Y., Mellouki, A., Tang, X., and Chen, J.: Compositions, sources, and potential health risks of volatile organic compounds in the heavily polluted rural North China Plain during the heating season, Sci. Total Environ., 789, 147956, https://doi.org/10.1016/j.scitotenv.2021.147956, 2021.
Yang, J., Roth, P., Durbin, T., and Karavalakis, G.: Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles: Part 1. Influence on regulated and gaseous toxic pollutants, Fuel, 252, 799–811, https://doi.org/10.1016/j.fuel.2019.04.143, 2019.
Yang, X., Xue, L., Wang, T., Wang, X., Gao, J., Lee, S., Blake, D. R., Chai, F., and Wang, W.: Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry, J. Geophys. Res.-Atmos., 123, 1426–1440, https://doi.org/10.1002/2017JD027403, 2018.
Yang, X., Zhang, G., Pan, G., Fan, G., Zhang, H., Ge, X., and Du, M.: Significant contribution of carbonyls to atmospheric oxidation capacity (AOC) during the winter haze pollution over North China Plain, J. Environ. Sci., 139, 377–388, https://doi.org/10.1016/j.jes.2023.06.004, 2024.
Yao, Y.-C., Tsai, J.-H., and Chou, H.-H.: Air pollutant emission abatement using application of various ethanol-gasoline blends in high-mileage vehicles, Aerosol Air Qual. Res., 11, 547–559, https://doi.org/10.4209/aaqr.2011.04.0044, 2011.
Yao, Z., Shen, X., Ye, Y., Cao, X., Jiang, X., Zhang, Y., and He, K.: On-road emission characteristics of VOCs from diesel trucks in Beijing, China, Atmos. Environ., 103, 87–93, https://doi.org/10.1016/j.atmosenv.2014.12.028, 2015.
Yu, W., Shen, X., Wu, B., Kong, L., Xuan, K., Zhao, C., Cao, X., Hao, X., Li, X., Zhang, H., and Yao, Z.: Real-world emission characteristics of carbonyl compounds from agricultural machines based on a portable emission measurement system, J. Environ. Sci., 124, 846–859, https://doi.org/10.1016/j.jes.2022.02.031, 2023.
Yue, X., Wu, Y., Hao, J., Pang, Y., Ma, Y., Li, Y., Li, B., and Bao, X.: Fuel quality management versus vehicle emission control in China, status quo and future perspectives, Energ. Policy, 79, 87–98, https://doi.org/10.1016/j.enpol.2015.01.009, 2015.
Zaharin, M. S. M., Abdullah, N. R., Masjuki, H. H., Ali, O. M., Najafi, G., and Yusaf, T.: Evaluation on physicochemical properties of iso-butanol additives in ethanol-gasoline blend on performance and emission characteristics of a spark-ignition engine, Appl. Therm. Eng., 144, 960–971, https://doi.org/10.1016/j.applthermaleng.2018.08.057, 2018.
Zhang, F., Shang, X., Chen, H., Xie, G., Fu, Y., Wu, D., Sun, W., Liu, P., Zhang, C., Mu, Y., Zeng, L., Wan, M., Wang, Y., Xiao, H., Wang, G., and Chen, J.: Significant impact of coal combustion on VOCs emissions in winter in a North China rural site, Sci. Total Environ., 720, 137617, https://doi.org/10.1016/j.scitotenv.2020.137617, 2020.
Zhang, F., Xiao, B., Liu, Z., Zhang, Y., Tian, C., Li, R., Wu, C., Lei, Y., Zhang, S., Wan, X., Chen, Y., Han, Y., Cui, M., Huang, C., Wang, H., Chen, Y., and Wang, G.: Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies, Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, 2024.
Zhang, Y., Xue, L., Dong, C., Wang, T., Mellouki, A., Zhang, Q., and Wang, W.: Gaseous carbonyls in China's atmosphere: Tempo-spatial distributions, sources, photochemical formation, and impact on air quality, Atmos. Environ., 214, 116863, https://doi.org/10.1016/j.atmosenv.2019.116863, 2019.
Zhang, Y., Xue, L., Carter, W. P. L., Pei, C., Chen, T., Mu, J., Wang, Y., Zhang, Q., and Wang, W.: Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity, Atmos. Chem. Phys., 21, 11053–11068, https://doi.org/10.5194/acp-21-11053-2021, 2021.
Zhao, L., Kaiser, Ralf. I., Lu, W., Xu, B., Ahmed, M., Morozov, A. N., Mebel, A. M., Howlader, A. H., and Wnuk, S. F.: Molecular mass growth through ring expansion in polycyclic aromatic hydrocarbons via radical–radical reactions, Nat. Commun., 10, 3689, https://doi.org/10.1038/s41467-019-11652-5, 2019.
Zhao, M., Shen, H., Zhang, J., Liu, Y., Sun, Y., Wang, X., Dong, C., Zhu, Y., Li, H., Shan, Y., Mu, J., Zhong, X., Tang, J., Guo, M., Wang, W., and Xue, L.: Carbonyl Compounds Regulate Atmospheric Oxidation Capacity and Particulate Sulfur Chemistry in the Coastal Atmosphere, Environ. Sci. Technol., 58, 17334–17343, https://doi.org/10.1021/acs.est.4c03947, 2024.
Short summary
Through lab tests and field measurements from typical sources, we found that carbonyl compounds from biomass burning are an order of magnitude higher than those from vehicles. The formation of carbonyl compounds in solid and liquid fuel is governed by combustion temperature and emission standards, respectively. Fuel type determines the chemical composition. Biomass burning and farm machinery are key drivers of atmospheric oxidation capacity. This study provides actionable solutions to safeguard public health.
Through lab tests and field measurements from typical sources, we found that carbonyl compounds...
Altmetrics
Final-revised paper
Preprint