Articles | Volume 25, issue 11
https://doi.org/10.5194/acp-25-5793-2025
https://doi.org/10.5194/acp-25-5793-2025
Research article
 | 
12 Jun 2025
Research article |  | 12 Jun 2025

Evaluation of O3, H2O, CO, and NOy climatologies simulated by four global models in the upper troposphere–lower stratosphere with IAGOS measurements

Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis

Viewed

Total article views: 651 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
481 145 25 651 4 41 38
  • HTML: 481
  • PDF: 145
  • XML: 25
  • Total: 651
  • Supplement: 4
  • BibTeX: 41
  • EndNote: 38
Views and downloads (calculated since 23 Jul 2024)
Cumulative views and downloads (calculated since 23 Jul 2024)

Viewed (geographical distribution)

Total article views: 651 (including HTML, PDF, and XML) Thereof 651 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 13 Jun 2025
Download
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in situ data collected aboard passenger aircraft to assess the ability of four chemistry–climate models to reproduce (bi-)decadal climatologies of ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere well.
Share
Altmetrics
Final-revised paper
Preprint