Articles | Volume 25, issue 10
https://doi.org/10.5194/acp-25-5159-2025
https://doi.org/10.5194/acp-25-5159-2025
Research article
 | 
21 May 2025
Research article |  | 21 May 2025

High-resolution greenhouse gas flux inversions using a machine learning surrogate model for atmospheric transport

Nikhil Dadheech, Tai-Long He, and Alexander J. Turner

Related authors

Simulating out-of-sample atmospheric transport to enable flux inversions
Nikhil Dadheech and Alexander J. Turner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3441,https://doi.org/10.5194/egusphere-2025-3441, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary

Cited articles

Asimow, N. G., Turner, A. J., and Cohen, R. C.: Sustained Reductions of Bay Area CO2 Emissions 2018–2022, Environ. Sci. Technol., 58, 6586–6594, https://doi.org/10.1021/acs.est.3c09642, 2024. a
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer Science+Business Media, LLC, ISBN 978-0-387-31073-2, 2006. a
Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811, https://doi.org/10.5194/amt-3-781-2010, 2010. a
Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Pétron, G., Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D., and Harriss, R.: Methane Leaks from North American Natural Gas Systems, Science, 343, 733–735, https://doi.org/10.1126/science.1247045, 2014. a, b
Brecht, R., Bakels, L., Bihlo, A., and Stohl, A.: Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution, Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023, 2023. a
Download
Short summary
We developed an efficient GHG (greenhouse gas) flux inversion framework using a machine-learning emulator (FootNet) as a surrogate for an atmospheric transport model, resulting in a 650 × speedup. Paradoxically, the flux inversion using the ML (machine-learning) model outperforms the full-physics model in our case study. We attribute this to the ML model mitigating transport errors in the GHG flux inversion.
Share
Altmetrics
Final-revised paper
Preprint