Articles | Volume 25, issue 7
https://doi.org/10.5194/acp-25-4131-2025
https://doi.org/10.5194/acp-25-4131-2025
Research article
 | 
10 Apr 2025
Research article |  | 10 Apr 2025

Investigating the limiting aircraft-design-dependent and environmental factors of persistent contrail formation

Liam Megill and Volker Grewe

Related authors

Influence of temperature and humidity on contrail formation regions in the general circulation model EMAC: a spring case study
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
Atmos. Chem. Phys., 25, 5911–5934, https://doi.org/10.5194/acp-25-5911-2025,https://doi.org/10.5194/acp-25-5911-2025, 2025
Short summary
A double-box model for aircraft exhaust plumes based on the MADE3 aerosol microphysics (MADE3 v4.0)
Monica Sharma, Mattia Righi, Johannes Hendricks, Anja Schmidt, Daniel Sauer, and Volker Grewe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1137,https://doi.org/10.5194/egusphere-2025-1137, 2025
Short summary
Multi-model assessment of the atmospheric and radiative effects of supersonic transport aircraft
Jurriaan A. van 't Hoff, Didier Hauglustaine, Johannes Pletzer, Agnieszka Skowron, Volker Grewe, Sigrun Matthes, Maximilian M. Meuser, Robin N. Thor, and Irene C. Dedoussi
Atmos. Chem. Phys., 25, 2515–2550, https://doi.org/10.5194/acp-25-2515-2025,https://doi.org/10.5194/acp-25-2515-2025, 2025
Short summary
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024,https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024,https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary

Cited articles

Agarwal, A., Meijer, V. R., Eastham, S. D., Speth, R. L., and Barrett, S. R. H.: Reanalysis-Driven Simulations May Overestimate Persistent Contrail Formation by 100 %–250 %, Environ. Res. Lett., 17, 014045, https://doi.org/10.1088/1748-9326/ac38d9, 2022. a
Appleman, H.: The Formation of Exhaust Condensation Trails by Jet Aircraft, B. Am. Meteorol. Soc., 34, 14–20, https://doi.org/10.1175/1520-0477-34.1.14, 1953. a
Barton, D. I., Hall, C. A., and Oldfield, M. K.: Design of a Hydrogen Aircraft for Zero Persistent Contrails, Aerospace, 10, 688, https://doi.org/10.3390/aerospace10080688, 2023. a
Benetatos, C., Eleftheratos, K., Gierens, K., and Zerefos, C.: A Statistically Significant Increase in Ice Supersaturation in the Atmosphere in the Past 40 Years, Scientific Reports, 14, 24760, https://doi.org/10.1038/s41598-024-75756-9, 2024. a
Bier, A. and Burkhardt, U.: Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions, J. Geophys. Res.-Atmos., 124, 3384–3400, https://doi.org/10.1029/2018JD029155, 2019. a
Download
Short summary
This study uses ERA5 data to better understand the relative importance of the factors limiting persistent contrail formation. We develop climatological relationships to estimate potential persistent contrail formation for existing as well as future aircraft and propulsion system designs. We identify latitudes and pressure levels where the introduction of novel aircraft designs would result in significant changes in potential persistent contrail formation compared to existing conventional aircraft.
Share
Altmetrics
Final-revised paper
Preprint