Articles | Volume 25, issue 6
https://doi.org/10.5194/acp-25-3567-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-3567-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Can zenith wet delay from GNSS “see” atmospheric turbulence? Insights from case studies across diverse climate zones
Gaël Kermarrec
CORRESPONDING AUTHOR
Institute for Meteorology and Climatology, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hanover, Germany
Xavier Calbet
AEMET, C/E Leonardo Prieto Castro 8, Ciudad Universitaria, Madrid, Spain
Zhiguo Deng
Deutsches GeoForschungsZentrum GFZ, Wissenschaftspark Albert Einstein, Telegrafenberg, Potsdam, Germany
Cintia Carbajal Henken
Institute of Meteorology, Freie Universität Berlin, Carl-Heinrich-Weg 6–10, Berlin, Germany
Related authors
No articles found.
Jan El Kassar, Cintia Carbajal Henken, Xavier Calbet, Pilar Rípodas, Rene Preusker, and Jürgen Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3605, https://doi.org/10.5194/egusphere-2024-3605, 2024
Short summary
Short summary
Water vapour is a key ingredient in virtually all meteorological processes. We present an algorithm which uses observations of the Flexible Combined Imager (FCI) to estimate the total column of water vapour over sun-lit, clear-sky pixels. FCI is a satellite instrument and every 10 minutes it takes an image which covers Europe, Africa and the Atlantic with a resolution of 1 km. Such high resolution water vapour fields will provide valuable information for weather forecasters and researchers.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Cited articles
Banville, S. and Langley, R. B.: Monitoring the Ionosphere Using Integer-Leveled GLONASS Measurements, in: Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), 4–18 September 2015, Tampa, Florida, pp. 3578–3588, 2015. a
Basu, S. and Holtslag, A.: Revisiting and revising Tatarskii's formulation for the temperature structure parameter (χT) in atmospheric flows, Environ. Fluid Mech., 22, 1107–1119, https://doi.org/10.1007/s10652-022-09880-3, 2022. a
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, https://doi.org/10.1029/2005JB003629, 2006. a
Calbet, X., Peinado-Galan, N., DeSouza-Machado, S., Kursinski, E. R., Oria, P., Ward, D., Otarola, A., Rípodas, P., and Kivi, R.: Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band?, Atmos. Meas. Tech., 11, 6409–6417, https://doi.org/10.5194/amt-11-6409-2018, 2018. a
Chang, L. and He, X.: InSAR atmospheric distortions mitigation: GPS observations and NCEP FNL data, J. Atmos. Sol.-Terr. Phy., 73, 464–471, https://doi.org/10.1016/j.jastp.2010.11.003, 2011. a
Cheinet, S. and Cumin, P.: Local Structure Parameters of Temperature and Humidity in the Entrainment-Drying Convective Boundary Layer: A Large-Eddy Simulation Analysis, J. Appl. Meteorol. Clim., 50, 472–481, http://www.jstor.org/stable/26174035 (last access: 5 January 2025), 2011. a
Curto, L., Gassmann, M. I., Covi, M., and Tonti, N. E.: Study of turbulence behavior above two different crops, Agr. Forest Meteorol., 322, 109012, https://doi.org/10.1016/j.agrformet.2022.109012, 2022. a
Graßl, S., Ritter, C., and Schulz, A.: The Nature of the Ny-Ålesund Wind Field Analysed by High-Resolution Wind Lidar Data, Remote Sens.-Basel, 14, 3771, https://doi.org/10.3390/rs14153771, 2022. a
Hobiger, T. and Jakowski, N.: Atmospheric Signal Propagation, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-42928-1_6, pp. 165–193, 2017. a
Ishimaru, A.: Wave propagation and scattering in Random Media, IEEE Press, IEEE Publications, U.S., Reissue Edition (1. Januar 1978), 599 pp., ISBN-10 0198592264, 2005. a
Kaifler, N., Kaifler, B., and Dörnbrack, A. e. a.: Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina, Sci. Rep., 10, 14529, https://doi.org/10.1038/s41598-020-71443-7, 2020. a
Kermarrec, G. and Deng, Z.: Zenith wet delay, LUIS [data set], https://doi.org/10.25835/HCC01FRE, 2024. a, b
Kermarrec, G. and Schön, S.: On the Mátern covariance family: a proposal for modeling temporal correlations based on turbulence theory, J. Geodesy, 88, 1061–1079, 2014. a
Kermarrec, G. and Schön, S.: On the determination of the atmospheric outer scale length of turbulence using GPS phase difference observations: the Seewinkel network, Earth Planets Space, 72, 1–16, 2020. a
Kermarrec, G., Klos, A., Lenczuk, A., and Bogusz, J.: Long-term temporal-scales of hydrosphere changes observed by GPS over Europe: a comparison with GRACE and ENSO, IEEE Geosci. Remote S., 21, 1500605, https://doi.org/10.1109/LGRS.2023.3345540, 2023. a
Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., and Nilsson, T.: GPT2: Empirical slant delay model for radio space geodetic techniques, Geophys. Res. Lett., 40, 1069–1073, https://doi.org/10.1002/grl.50288, 2013. a
Lee, T. R. and Meyers, T. P.: New Parameterizations of Turbulence Statistics for the Atmospheric Surface Layer, Mon. Weather Rev., 151, 85–103, https://doi.org/10.1175/MWR-D-22-0071.1, 2023. a
Lilly, J. M.: jLab: A data analysis package for Matlab, v. 1.6.6, Jonathan M. Lilly [code], http://www.jmlilly.net/jmlsoft.html (last access: 21 March 2025), 2019. a
Lilly, J. M., Sykulski, A. M., Early, J. J., and Olhede, S. C.: Fractional Brownian motion, the Matérn process, and stochastic modeling of turbulent dispersion, Nonlin. Processes Geophys., 24, 481–514, https://doi.org/10.5194/npg-24-481-2017, 2017. a, b
Männel, B., Zus, F., Dick, G., Glaser, S., Semmling, M., Balidakis, K., Wickert, J., Maturilli, M., Dahlke, S., and Schuh, H.: GNSS-based water vapor estimation and validation during the MOSAiC expedition, Atmos. Meas. Tech., 14, 5127–5138, https://doi.org/10.5194/amt-14-5127-2021, 2021. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Maturilli, M., Herber, A., and König-Langlo, G.: Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard, Earth Syst. Sci. Data, 5, 155–163, https://doi.org/10.5194/essd-5-155-2013, 2013. a
Mauritsen, T.: On the Arctic Boundary Layer: From Turbulence to Climate, PhD thesis, Meteorologiska institutionen (MISU), Ph.D. Thesis, Stockholms universitet, 2007, 2007. a
Moeng, C.-H. and Sullivan, P. P.: A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows, J. Atmos. Sci., 51, 999–1022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2, 1994. a
Montillet, J. P. and Bos, M. S. (Eds.): Geodetic Time Series Analysis in Earth Sciences, Springer International Publishing, https://doi.org/10.1007/978-3-030-21718-1, 2020. a
Pierzyna, M., Saathof, R., and Basu, S.: Π-ML: A Dimensional Analysis-Based Machine Learning Parameterization of Optical Turbulence in the Atmospheric Surface Layer, Opt. Lett., 48, 4484–4487, https://doi.org/10.1364/OL.492652, 2023. a
Pierzyna, M., Basu, S., and Saathof, R.: OTCliM: generating a near-surface climatology of optical turbulence strength ( ) using gradient boosting, arXiv [preprint], arXiv:2408.00520, 2024. a
Saastamoinen, J.: Contributions to the theory of atmospheric refraction, B. Geod. (1946–1975), 105, 279–298, 1972. a
Santosh, M.: Structure and development of the atmospheric boundary layer over a small island (Mahé Island, Seychelles) in the equatorial Indian Ocean, Meteorol. Atmos. Phys., 134, 91, https://doi.org/10.1007/s00703-022-00924-3, 2022. a
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639, https://doi.org/10.1021/ac60214a047, 1964. a
Schafer, R. W.: On the frequency-domain properties of Savitzky-Golay filters, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, AZ, USA, 2011, 54–59, https://doi.org/10.1109/DSP-SPE.2011.5739186, 2011. a
Schmid, M., Rath, D., and Diebold, U.: Why and How Savitzky–Golay Filters Should Be Replaced, ACS Measurement Science Au, 2, 185–196, https://doi.org/10.1021/acsmeasuresciau.1c00054, 2022. a, b
Shawon, A. S. M., Prabhakaran, P., Kinney, G., Shaw, R. A., and Cantrell, W.: Dependence of aerosol-droplet partitioning on turbulence in a laboratory cloud, J. Geophys. Res.-Atmos., 126, e2020JD033799, https://doi.org/10.1029/2020JD033799, 2021. a
Solheim, F. S., Vivekanandan, J., Ware, R. H., and Rocken, C.: Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates, J. Geophys. Res.-Atmos., 104, 9663–9670, https://doi.org/10.1029/1999JD900095, 1999. a
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, Hardcover ISBN 978-90-277-2768-8 , https://doi.org/10.1007/978-94-009-3027-8, 2003. a, b
Sun, J., Hu, W., Wang, N., Zhao, L., An, R., Ning, K., and Zhang, X.: Eddy covariance measurements of water vapor and energy flux over a lake in the Badain Jaran Desert, China, J. Arid Land, 10, 517–533, https://doi.org/10.1007/s40333-018-0057-3, 2018. a
Tatarski, V. I., Silverman, R. A., and Chako, N.: Wave Propagation in a Turbulent Medium, Dover Publications Inc., Reissue Edition, 285 pp., ISBN-10 9780486810294, 1961. a
Taylor, G. I.: The Spectrum of Turbulence, P. Roy. Soc. Lond. A Mat., 164, 476–490, https://doi.org/10.1098/rspa.1938.0032, 1938. a, b
Teke, K., Böhm, J., Nilsson, T., Schuh, H., Steigenberger, P., Dach, R., Heinkelmann, R., Willis, P., Haas, R., Garcia-Espada, S., Hobiger, T., Ichikawa, R., and Shimizu, S.: Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns, J. Geodesy, 87, 981–1001, https://doi.org/10.1007/s00190-013-0662-z, 2013a. a
Teke, K., Nilsson, T., Böhm, J., Hobiger, T., Steigenberger, P., García-Espada, S., Haas, R., and Willis, P.: Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns, J. Geodesy, 87, 981–1001, 2013b. a
Tregoning, P. and Herring, T. A.: Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays, Geophys. Res. Lett., 33, 23, https://doi.org/10.1029/2006GL027706, 2006. a
van Dinther, D. and Hartogensis, O. K.: Using the Time-Lag Correlation Function of Dual-Aperture Scintillometer Measurements to Obtain the Crosswind, J. Atmos. Ocean. Tech., 31, 62–78, https://doi.org/10.1175/JTECH-D-13-00118.1, 2014. a
Webb, S. R., Penna, N. T., Clarke, P. J., Webster, S., Martin, I., and Bennitt, G. V.: Kinematic GNSS Estimation of Zenith Wet Delay over a Range of Altitudes, J. Atmos. Ocean. Tech., 33, 3–15, https://doi.org/10.1175/JTECH-D-14-00111.1, 2016. a
Wright, C. J., Hindley, N. P., Moss, A. C., and Mitchell, N. J.: Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage – Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes, Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, 2016. a
Yokoi, T., Tozuka, T., and Yamagata, T.: Seasonal variation of the Seychelles Dome, J. Climate, 21, 3740–3754, https://doi.org/10.1175/2008JCLI1957.1, 2008. a
Zhou, Y., Guo, J., Zhao, T., Lv, J., Bai, Y., Wang, C., Sun, X., and Hu, W.: Roles of atmospheric turbulence and stratification in a regional pollution transport event in the middle reaches of the Yangtze River, Earth Space Sci., 9, e2021EA002062, https://doi.org/10.1029/2021EA002062, 2022. a
Ziad, A.: Review of the Outer Scale of the Atmospheric Turbulence, in: Proceedings Volume 9909, Adaptive Optics Systems V, SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom, 99091K, SPIE, https://doi.org/10.1117/12.2231375, 2016. a, b
Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., and Webb, F.: Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102, 5005–5017, 1997. a
Short summary
Atmospheric delays affect global navigation satellite system (GNSS) signals. This study analyses the wet delay, a variable component caused by atmospheric water vapor, using a novel filtering method to examine small-scale turbulent variations. Case studies at five global stations revealed daily and seasonal turbulence patterns. This research will improve water vapour and cloud models, enhance nowcasting, and refine stochastic modelling for GNSS and very long baseline interferometry.
Atmospheric delays affect global navigation satellite system (GNSS) signals. This study analyses...
Altmetrics
Final-revised paper
Preprint