Articles | Volume 25, issue 1
https://doi.org/10.5194/acp-25-327-2025
https://doi.org/10.5194/acp-25-327-2025
Research article
 | 
09 Jan 2025
Research article |  | 09 Jan 2025

The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles

Ryan Schmedding and Andreas Zuend

Related authors

A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 23, 7741–7765, https://doi.org/10.5194/acp-23-7741-2023,https://doi.org/10.5194/acp-23-7741-2023, 2023
Short summary
Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020,https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025,https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025,https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
How to trace the origins of short-lived atmospheric species: an Arctic example
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025,https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Dust-producing weather patterns of the North American Great Plains
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025,https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025,https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary

Cited articles

Amirfazli, A. and Neumann, A.: Status of the three-phase line tension: a review, Adv. Colloid Interfac., 110, 121–141, https://doi.org/10.1016/j.cis.2004.05.001, 2004. a
Antonov, G. N.: Sur la tension superficielle à la limite de deux couches, J. Chim. Phys., 5, 372–385, https://doi.org/10.1051/jcp/1907050372, 1907. a, b
Aston, M. S. and Herrington, T. M.: The effect of added electrolyte on surface pressure/area per molecule isotherms, J. Colloid Interfac. Sci., 141, 50–59, 1991. a
Aveyard, R. L. and Saleem, S. M.: Interfacial tensions at alkane-aqueous electrolyte interfaces, J. Chem. Soc. Faraday T., 72, 1609–1617, https://doi.org/10.1039/F19767201609, 1976. a
Bahramian, A.: Unlocking the Secrets of Liquid-Liquid Interfaces and Phase Equilibria: Exploring the Interplay of Critical Composition, Interfacial Tension, and Mutual Solubility, Langmuir, 40, 4684–4701, https://doi.org/10.1021/acs.langmuir.3c03344, 2024. a, b
Download
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Share
Altmetrics
Final-revised paper
Preprint