Articles | Volume 25, issue 23
https://doi.org/10.5194/acp-25-17275-2025
https://doi.org/10.5194/acp-25-17275-2025
Research article
 | 
02 Dec 2025
Research article |  | 02 Dec 2025

Optimizing CCN predictions through inferred modal aerosol composition – a boreal forest case study

Rahul Ranjan, Maura Dewey, Liine Heikkinen, Lauri R. Ahonen, Krista Luoma, Paul Bowen, Tuukka Petäjä, Annica M. L. Ekman, Daniel G. Partridge, and Ilona Riipinen

Data sets

rahulranjanaces/Inverse-closure: inverse-closure (Version 0) R. Ranjan https://doi.org/10.5281/zenodo.17243563

rahulranjanaces/DREAM-MCMC: Inverse-closure using DREAM-MCMC (DREAM-MCMC) M. Dewey https://doi.org/10.5281/zenodo.17243685

Cloud Condensation Nuclei observation data (2016--2020) for the study 'Optimizing CCN predictions through inferred modal aerosol composition -- a boreal forest case study' L. Ahonen et al. https://doi.org/10.5281/zenodo.17277646

Model code and software

rahulranjanaces/Inverse-closure: inverse-closure (Version 0) R. Ranjan https://doi.org/10.5281/zenodo.17243563

rahulranjanaces/DREAM-MCMC: Inverse-closure using DREAM-MCMC (DREAM-MCMC) M. Dewey https://doi.org/10.5281/zenodo.17243685

Download
Short summary
We use multi-year measurements of cloud condensation nuclei (CCN) at a boreal forest site to inversely infer size-resolved aerosol chemical composition. We find that inorganic species are more enriched in the larger end (accumulation mode) of the sub-micron aerosol population while organics often dominate the smaller end (Aitken mode). Our approach demonstrates the potential of long-term CCN measurements to infer size-resolved chemical composition of sub-micron aerosol.
Share
Altmetrics
Final-revised paper
Preprint