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Figure S1 (a) Lognormal size distributions calculated from the fit parameters obtained after applying the algorithm by Hussein

et al. (2005) on observed size distributions. The solid lines represent the median values, while the shading indicates the

percentiles. (b) Fitted versus observed total particle number concentration.
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Figure S3 Monthly variation of activation diameter (D,) for different supersaturation levels (SS) derived from aerosol number

size distributions and observed CCN concentration. The plots display the median values (solid lines) and the corresponding




14 25th to 75th percentile range (error bars). Each panel represents a different supersaturation level ranging from 0.1% to 1.0%.

15 The x-axis shows the months of the year, while the y-axis indicates D, Error bars represent the variability within each month.

16

17

18  Table S1. Median activation diameters (Dact) in nanometers by season:
Seasons Dact at SS = Dact at SS = Dact at SS = Dact at SS = Dact at SS =

0.1% 0.2% 0.3% 0.5% 1.0%

Spring 206 127 100 80 54
Summer 224 135 105 82 57
Autumn 224 137 109 84 56
Winter 206 129 104 82 55

19

20

21 S1. Calculation of mass fraction of organic nitrate

22

23 We have used the fragmentation pattern of nitrate in the ACSM to determine whether the detected nitrate

24 is from ammonium nitrate or organic nitrate. The idea is based on Farmer et al. (2010) and in a nutshell, ammonium
25  nitrate will yield a higher fraction of NO3 as opposed to NO* compared to organic nitrate. NOF and NO* are the
26 main peaks where nitrate will be distributed in. the fraction of nitrate that would be from organic nitrates (foy)-

27 The formula as mentioned in Farmer et al., 2010 is:

28
fon = Eiobs _II:AN) X (1+ RON)' 1)
oN — Ran) X (1 + Rops)
29
30 - fon is the fraction of nitrate that is from organic nitrates
31 - Ry is the NO*: NOY from ACSM measurements (nitrate fractions of m/z 30 and m/z 46)
32 - R,y isthe NO*: NOF that the AN calibration would yield
33 - Rgyisthe NO*: NOY for pure organic nitrate
34

35 Here, it is assumed that Ry = 2 since this would limit the number of negative values for fyy, when Rgy = 10.
36 The Rgy = 10 is to be expected from the NOs oxidation of a-pinene, which is assumed as a major source of ON
37 at SMEAR II. Finally, using Eq. S1 with the Ry and Rgy constants for 2016 onwards, a conservative guess for
38 the time series for foy can be derived (Fig. S4). As fon exhibits a clear, and rather consistent seasonality, a seasonal
39  mask could be retrieved using day-of-the year -based 3-month running median (Fig. S4). This day-of-the-year
40  based mask is used further to estimate how much of the measured nitrate was present as ON and AN (the
41  ammonium nitrate mass fraction fan = 1 — fon).

42
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Figure S4 Mask determining how much of the NOs3 ion is organic nitrate, and how much ammonium nitrate.
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Figure S5 Predicted ammonium ion (concentration necessary to achieve ion balance within the particles) and observed mass

concentration of ammonium ion.

S2. Demonstration of how scaling works

In this section, we describe the method (also referenced in Sect. 2.2.3 of the main article) used to scale
the fitted size distribution to match the observations. This ensures that the total particle concentration, as well as
the number of particles in each bin of the reconstructed size distribution (derived from fitted bimodal lognormal
parameters), remains consistent with the observed size distribution (see Fig. S6). As a result, whether we use the
original observed size distribution or the fitted bimodal size distribution when applying bulk chemical
composition, the predicted CCN spectra remain the same. During scaling process, for each bin, the observed

concentration is compared to the sum of the two fitted modes. If only one mode contributes, its concentration is
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adjusted directly to match the observed value. When both modes contribute, the difference between observed and

fitted totals is distributed proportionally based on each mode's relative contribution.

To better understand the process, scaling is explained in the steps as follows:

We have (in cm™):

Nops; : Observed concentration in bin i

Ngi ait : Fitted concentration for Aitken mode in bin i

Neit acc : Fitted concentration for accumulation mode in bin i

Nicaled aiti: Scaled concentration for Aitken mode in bin i

Niscaled,acc,i: Scaled concentration for accumulation in bin i

The scaling follows these steps:

Step 1: Scaling in the size distribution where only the Aitken mode has particles (Nfit acc; = 0)

Ngcated,aiti = Neaiti + (Nobsi — Nrivaiti) (82)
Nscaled,acc,i =0 (S3)

Step 2: Scaling in the size distribution where only the accumulation mode has particles (Ng ajt; = 0)

Nscaled,acc,i = Nfit,acc,i + (Nobs,i - Nfit,acc,i) (S4)

Nycaled,aiti = 0

Step 3: Scaling where both modes have contributions to the number of particles (Ngairi 7 0, Nfiracei 7 0);

Compute the fractional contributions of each mode

fractional contribution of Aitken mode,

fractional contribution of accumulation mode,

Nii it
X1, = " S5
" Npcaiti + Neitacei (55)
Neo o
xzi — fit,acc,i (S6)

Nrigaiti + Nivace,i
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Xi = Nobsi — (Nfiaiti + Nitace,i)

scaling factor, S7)
apply scaling,  Ncatedaiti = Nrgaii T Xi- X1; (S8)
Nscaled,acc,i = Nfit,acc,i + X X2 (S9)

Not scaled Scaled
175{ = Aitken — Aitken

° = Accumulation = Accumulation
g 150 | === Sum of fitted modes = Sum of fitted modes
= = = Observed = = Observed
5125
=
g
=100
=}
8
g2 75
3
T 50
[}
=
g 25
=
z

(1]

102 102
Dp [nm] Dp [nm]

Figure S6 An example of the size distribution scaling procedure. Bimodal fitting is done first and then the scaling aligns the
reconstructed lognormal size distributions (black line in the left panel i.e. sum of fitted modes) with the observed distribution

across binned diameters (D).

S3. Conservation of mass

In both the Nelder—-Mead and DREAM-MCMC optimizations, the total aerosol mass is conserved across
all chemical species (organics, inorganics, and eBC). Additionally, the eBC mass is fixed in both the Aitken and
accumulation modes. This constraint reduces the optimization problem: we only vary the mass of one species
(e.g., organics in the Aitken mode), while the remaining components are derived from conservation laws. For a
given time step in the time series, let, mx: and m&t are the total masses in Aitken and accumulation mode,

respectively, obtained from bimodal size distribution and mass fractions. Similarly, let mpc a;; and mg 4 are the

fixed eBC masses, then for each m,g a;; the optimization algorithm explore:

— tot
Minorgait = Maic — (Morgait + Macait) (S10)
— tot
Morgacc = Morg — Morgait (Sll)
— tot
minorg,acc = Myee — (morg,acc + mBC,acc) (S12)

S4. Bayesian inference and MCMC
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Bayesian inference is a rigorous method for quantifying uncertainty in model parameters (see also see
Gelman et al., 2013), using probability statements. Unknown parameters are treated as random variables with

some joint posterior probability distribution, which can be written using Bayes law as:

p(0)L(Y]6)

p(@lY) = o)

(S13)

where p(6) is the prior distribution which encompasses what is known about the parameters prior to observing

any data, L(Y|0) is the likelihood function which measures how well the model fits observed data, and

p(¥) = f p()p(Y16)do (S14)

is the marginal distribution of Y, which represents the probability of observing Y given all possible parameter
values 8. The result of conditioning the prior distribution with some observations is the posterior probability
distribution p(6|Y), which represents the updated probability of the model parameters. Bayesian inference is
therefore a process of creating a probability model and iteratively updating that model based on some observations,
resulting in a best estimate of the parameters and knowledge about their uncertainty, sensitivity, and correlation

(in the case where 0 is vector-valued).

Monte Carlo Markov Chain (MCMC) simulations are a methodology for sampling from posterior distributions.
Generally, they involve repeatedly and sequentially sampling 6 such that each new draw depends only on the
previous sample and therefore forms a Markov chain, and correcting those draws so that the chain converges to
the target distribution. Many different algorithms have been proposed for generating and correcting chain samples.
Here we use the DiffeRential Evolution Adaptive Metropolis Markov Chain Monte Carlo (DREAM-MCMC)
algorithm (Vrugt et al. 2009). This algorithm runs multiple chains simultaneously and adaptively updates the
proposal distribution using a randomized subset of the chains’ joint history. It also supports large proposal jumps
and outlier rejection during the initial burn-in phase, which accelerate convergence. This type of self-adaptive
evolutionary strategy is particularly well suited to heavy-tailed or multi-modal posteriors, such as in this study
where different combinations of aerosol chemical composition and size distributions parameters could result in

similar CCN spectra.

S5. Chain evolution in DREAM-MCMC

As mentioned in sect. 2.2.3.1, we ran five DREAM-MCMC chains with 40,000 sampling steps each for
each CCN observation window. Figure S7 shows that for both windows there is an overprediction of the CCN
spectra when bulk composition is used, which is mostly corrected with the DREAM-MCMC optimized
parameters, showing that when size-segregated composition is combined with variability in the lognormal size
distribution parameters, most of the discrepancy between observed and predicted CCN can be resolved. Figures

S8 and S9 show examples of the chain evolution and the resulting posterior distributions for two distinct cases.
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Figure S7. Observed and optimized CCN spectra. The black line shows the observed spectra, the blue line represents the
optimized spectra using the Nelder—-Mead method with only size-segregated chemical composition as the optimized parameter,
and the red line represents the DREAM-MCMC optimization where both size-segregated composition and size distribution

parameters are optimized. Panel (a) corresponds to 2019-05-11 05:00:00, and panel (b) corresponds to 2019-10-15 07:00:00.

The first example (Figure S7a and Figure S8) corresponds to a spring-time window, specifically 2019-05-11
05:00:00. There is a higher total CCNc, and the DREAM-MCMC improves the closure at all super-saturations.
All 5 chains converge well with R-hat values very close to 1 for all parameters. The posterior distributions are
relatively compact with the chain evolution indicating stable convergence, with broader distributions for morg,ait
(in this note denoted as Morg1) and Nait (in this note denoted as N1). There is a significant shift in the median of the
posterior distribution of Mo compared to the initial guess, whereas the posteriors of the size distribution
parameters are centred on values very close to the median of the observations, suggesting that an increased mass
fraction of organics in the Aitken mode is the key to better CCN closure for this time-step. However, the posterior
distribution for Mo is relatively wide, indicating less sensitivity to the exact value compared to the very tight
posterior distributions for D1, N1, and D> (the diameters and number concentrations corresponding to Aitken and

accumulation modes), which suggest that the closure is very sensitive to those three parameters.

In the second example (Figure S7b and Figure S9) the situation is more complex. This corresponds to a fall
window, specifically 2019-10-15 07:00:00, where the total CCNc is lower. While DREAM-MCMC significantly
improves the closure, it struggles more compared to the previous case, over-predicting at 0.1% SS and
underpredicting at 0.2% and 0.3%. The chains show slower mixing and broader posteriors for several parameters,
particularly Morg1, N1 and Dxz. In this case medians of the posterior distributions are significantly shifted from the
initial guesses for all parameters. The R-hat values using all 5 chains are below 1.5 for all parameters but are
larger for N1 and D1 (approx. 1.3 for both), indicating poorer mixing. Wider posteriors indicate possibly weak
identifiability, meaning that multiple parameter combinations can yield similarly good agreement with the
observed CCN spectra, pointing to stronger parameter correlations in the posterior. Here, Mo is more poorly
constrained than in the first case, but the number concentration parameters (N1 and N>) still play a more dominant

role in reducing the CCN prediction.
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Figure S8. Chain evolution (right) and posterior distributions of the optimized parameters (left) from the DREAM-MCMC
run. Each plot shows five parallel chains with 40,000 sampling steps. The vertical dashed line in the right panels marks the
end of the burn-in period, and the posterior distributions on the left are taken from the final samples after burn-in which are

used for posterior inference. Results correspond to observation 4200 (2019-05-11 05:00:00).
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Figure S9. Chain evolution (right) and posterior distributions of the optimized parameters (left) from the DREAM-MCMC
run. Each plot shows five parallel chains with 40,000 sampling steps. The vertical dashed line in the right panels marks the
end of the burn-in period, and the posterior distributions on the left are based on the final samples after burn-in which are used

for posterior inference. Results correspond to observation 5813 (2019-10-15 07:00:00).

S6. Distribution of median absolute deviation (MAD)

Figure S10 shows the probability density of median absolute deviation, MAD values fitted with chi-
squared distributions for both the Aitken and accumulation modes. The results indicate that the variability is
generally small, with distributions strongly centered close to zero and narrow tails. The fitted chi-squared
parameters suggest that fluctuations in diameter and sigma are low, whereas number concentrations show
comparatively larger spread. Overall, this analysis confirms that the derived parameters remain fairly stable within

CCN cycle period, with occasional variability in particle number concentration.
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Figure S10. Chi-squared probability density functions (PDFs) fitted to the median absolute deviation (MAD) values of aerosol
size distribution parameters calculated with respect to median of corresponding parameters during CCN cycle. The data
represent entire 5 years period between 2016 to 2020. Panels show Aitken mode (top row) and accumulation mode (bottom
row) MADs for mode diameter, geometric standard deviation (o), and particle number concentration. The fitted parameters
(degrees of freedom, v, and scale) are reported in the legends. The fits are constrained to non-negative values to reflect the

definition of MAD.

S7. Distribution of normalized root mean square error (NRMSE) over brute-force sampled mass fraction

bins of organic in Aitken mode (forg, Aitken)

To investigate how different combinations of mass fractions of different species in the Aitken and
accumulation modes influence the model performance, we complemented the inverse modelling algorithms with
a brute-force sampling approach. This allowed us to explore the full parameter space and examine the variation
in normalized root mean square error (NRMSE) between measured and modelled CCN spectra across the entire
dataset (2016-2020). Figure S11 illustrates the distribution of NRMSE values over this parameter space with

respect to all samples of mass fraction of organics in Aitken mode (forg, Aitken).

10
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Figure S11 Violin plots of the normalized root mean square error (NRMSE) between measured and modelled CCN spectra

during optimization, grouped by the mass fraction of organics in the Aitken mode (forg, Aitken)-
S8. Calculation of activation diameter

The activation diameter, often referred to as the critical diameter, represents the minimum size of
particles that can activate into cloud droplets at a given SS. This method estimates the activation diameter based

on observed cloud condensation nuclei concentrations and particle number size distribution data.
Methodology

1. For a given CCN concentration at a particular supersaturation level:
o Find the bin where the cumulative particle concentration is either equal to or exceeds the CCN
concentration (upper bound).
o Find the size bin where the cumulative particle concentration just falls below the CCN
concentration.
2. Linear interpolation between size bins:
o The activation diameter lies between the sizes associated with the lower and upper bounds.

Assuming that particle concentration changes linearly between these bins:
Dact = Do+ 280 (D, — D) (S15)
Ni—Ng

Where:

11
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Figure S12 Time series of sulfate ion mass concentration measured by the ACSM. Scatter points represent individual sulfate
ion concentration values, while the black solid line indicates the linear regression fit. The slope and p-value of the regression

are provided in the legend. The statistical significance of the trend is assessed at the 95% confidence level (p < 0.05).
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Figure S13 Mass fractions of various chemical species during different seasons.
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232 Figure S14 Monthly median CCN concentrations at different supersaturations with shaded areas indicating the interquartile
233 range.

234

235 Table S2. Geometric mean bias (GMB) and Pearson’s correlation coefficient (R) corresponding to different methods and

236  supersaturations

Methods GMB (R) GMB (R) GMB (R) GMB (R) GMB (R)
S5=0.1% S§5=0.2% S$5=0.3% S5 =0.5% S5 =1.0%
Kpulk 1.56 (0.89) 1.19 (0.93) 1.19 (0.93) 1.34 (0.92) 1.34 (0.89)
Ko1s 1.35(0.85) 1.11 (0.93) 1.11 (0.93) 1.24 (0.93) 1.26 (0.90)
Kopt 1.53 (0.89) 1.13(0.93) 1.12 (0.94) 1.21(0.94) 1.20 (0.93)
Korg =0 0.92 (0.83) 0.87 (0.87) 0.94 (0.87) 1.086 (0.89) 1.938 (0.87)
KnmcMmc 1.32 (0.85) 0.95 (0.97) 0.96 (0.99) 1.05 (0.99) 0.99 (0.99)
237
238
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239 Geometric mean bias

240 Figure S15 Scatter plot illustrating the geometric mean bias (GMB) and Pearson correlation for different supersaturation (SS)
241 levels, comparing four methods: Kyyix, Ko.1g, and Kopg, Korg = 0. Each marker represents a different SS level, with size

242 proportional to SS level, ranging from 0.1% to 1.0%. Bias is presented on the x-axis and correlation on the y-axis, with vertical
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lines indicating perfect prediction (bias = 1). The plot shows the performance of each method across various SS levels, with

annotations indicating underprediction (bias < 1) and overprediction (bias > 1).

S9. Performance Metrics of Various CCN Prediction Methods

In figure S15, we looked at GMB but importantly, another quantity, the standard deviation (SD) of GMB
provides insight into the robustness of each method: a lower SD indicates that the bias is consistent across cases,
while a higher SD suggests larger variability in performance (Fig. S16). This makes it a key metric to consider

when evaluating the stability of CCN prediction methods.

Performance at SS = 0.5% Performance at SS = 1.0%
14 GMB GMB
sD SD
12 Correlation Correlation
1.0
[
2
©
Sos
O
£
% 0.6
=
04
0.2
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P o 0 Kort ‘0‘94 KM““" Koo <= oV Koot ‘0‘94 ‘“,\(_Mc

Figure S16 Comparison of CCN prediction performance at supersaturations of 0.5 % and 1.0 % using different methods.
Metrics shown are geometric mean bias (GMB), its standard deviation (SD), and correlation between predicted and observed
CCN.

The results show that DREAM-MCMC (kycmc) performs best overall, with a geometric mean bias very close to
unity, extremely high correlation with observations, and the lowest spread. This indicates that it provides the most
accurate and stable CCN predictions. The K, method, which optimizes only size-segregated composition, ranks
second: it achieves high correlation and relatively low variability, though the bias remains slightly above one,
suggesting moderate overprediction. k., = 0 falls in the middle, with moderate bias, correlation, and variability,
making it balanced but not particularly strong in any metric. The fixed x = 0.18 approach performs similarly to
Korg = 0 but is slightly weaker, with somewhat lower correlation. Finally, Ky, performs the worst, showing the

highest bias and systematic overprediction of CCN, along with only moderate correlation and spread.
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Figure S17. Seasonal variability of k for Aitken and accumulation mode particles derived using Nelder—Mead optimization
(left) and DREAM-MCMC inversion (right). Boxes represent interquartile ranges, whiskers the 5th-95th percentiles, and

horizontal lines the medians.

Table S3. Median of optimized mass fractions of various chemical species in Aitken mode in different seasons

Spring Summer Autumn Winter
Organics 0.89 0.92 0.87 0.83
Inorganics 0.0017 0.0001 0.0001 0.0001
eBC 0.10 0.075 0.13 0.17

Table S4. Median of optimized mass fractions of various chemical species in accumulation mode in different

seasons
Spring Summer Autumn Winter

Organics 0.54 0.71 0.57 0.46

Inorganics 0.37 0.23 0.32 0.40

eBC 0.09 0.06 0.10 0.14

Table SS. Mean of optimized mass fractions of various chemical species in Aitken mode in different seasons

Spring Summer Autumn Winter
Organics 0.70 0.75 0.72 0.69
Inorganics 0.20 0.19 0.16 0.16
eBC 0.1 0.06 0.11 0.15

Table S6. Mean of optimized mass fractions of various chemical species in Accumulation mode in different

s€asons

Spring Summer Autumn Winter

Organics 0.54 0.65 0.55 0.44
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Inorganics 0.37 0.28 0.33 0.41
eBC 0.09 0.06 0.11 0.15

Table S7. Median mass fractions by group and optimization method.

Groups Organics Inorganics BC Organics Inorganics BC

(Aitken) (Aitken) (Aitken) (Acc) (Acc) (Acc)

KAitken > Kaccumulation 0.11 0.78 0.11 0.69 0.23 0.08
(MCMO)

KAitken > Kaccumulation 0.0004 0.87 0.12 0.68 0.23 0.087

(Nelder-Mead)

Kaccumulation > KAitken 0.87 0.04 0.09 0.54 0.37 0.088
(MCMO)

Kaccumulation > KAitken 0.91 0.0001 0.09 0.09 0.58 0.087

(Nelder-Mead)

Table S8. Median x and fraction of data points by group and optimization method.

Groups Median xaitken Median Kaccumulation Fraction of data
Kaitken > Kaccumulation (MICMC) 0.47 0.21 0.54
KAitken > Kaccumulation (Nelder-Mead) 0.50 0.20 0.23
Kaccumulation > KAitken (MCMC) 0.13 0.27 0.46
Kaccumulation > Kaitken (Nelder-Mead) 0.11 0.26 0.77

S10. Insights on effect of the assumption of fixed eBC mass in both modes

The CCN spectra obtained using bulk chemical composition generally depicts overprediction from the
observations, with the largest bias at both lowest supersaturation (0.1%) and the highest supersaturation (1.0%).
A way to reduce this overprediction is to have a size-segregated composition that makes the Aitken mode as low
in hygroscopicity as possible. As a conservative approach, when eBC is fixed only in accumulation mode (leaving
no eBC mass in Aitken mode), the 5 year averaged (median) NRMSE remains almost similar at 0.28 (a little on
higher side), while Aitken kappa is a bit higher as an non-hygrosocopic element i.e. eBC is now completely is
accumulation mode. In another approach, we allowed eBC to vary as an additional optimization parameter along
with organics in the Aitken mode instead of keeping its mass fraction fixed in both modes. As expected, this
adjustment lowers the NRMSE from 0.28 to 0.23, while the optimized k remains nearly unchanged, but a little on
lower side than the setup we use (see Table S10). Interesting to note that, this setup suggest that there should be
70% eBC in Aitken mode which seems unrealistic. Complementary results from DREAM-MCMC optimization
(optimizing modal BC mass fraction while considering variability of lognormal parameters of size distribution
during CCN cycle, see Table S11) of the same problem suggests similar results with around on an average 41%

BC in Aitken mode — again a very high number considering the expected aerosol sources at the cite.
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Table S9. Median of optimized mass fractions of various chemical species in Aitken and accumulation mode

when all eBC are kept in accumulation mode — results from Nelder-Mead

Organics Inorganics eBC Organics Inorganics eBC
(Aitken) (Aitken) (Aitken) (accumulation) (accumulation) (accumulation)
0.99 0.01 0.00 0.59 0.43 0.10

Table S10. Median of optimized « in different seasons when all eBC are kept in accumulation mode- results from

Nelder-Mead

Spring Summer Autumn Winter
KAitken 0.12 0.12 0.12 0.12
Kaccumulation 0.27 0.21 0.24 0.29

Table S11. Median of optimized mass fractions of various chemical species in Aitken and accumulation mode

when eBC is also an optimized parameter

Organics Inorganics eBC Organics Inorganics eBC
(Aitken) (Aitken) (Aitken) (accumulation) (accumulation) (accumulation)
Nelder- 0.26 0.046 0.70 0.62 0.31 0.07
Mead
MCMC 0.32 0.27 0.41 0.63 0.30 0.07

S11. Optimizing organic properties

We conducted additional inverse-closure sensitivity studies to assess how the assumed organic aerosol

properties influence the optimized parameters. Three types of inverse-closure tests were performed:

a) Using bulk-composition but optimizing only the organic density, p,., and organic hygroscopicity
parameter, Kq.g

b) Optimizing p, and k., While also accounting for variability of size distribution lognormal parameters
during CCN cycles

¢) Optimizing morgait, Porg and Korg but not accounting for variability of size distribution lognormal

parameters during CCN cycles

In all tests, K,.q Was varied between 0.05 and 0.15, while p,, ranged from 1000 to 3000 kg m~. Method (a)
resulted in a lower NRMSE but yielded a median optimized organic density of 1000 kg m™, which appears
unrealistic. Method (b) produced a slightly higher NRMSE (0.085 compared to 0.079 from kp;cpmc) but provided
a more realistic optimized organic density of 2179 kg m™, exhibiting clear seasonal variability, with a minimum
of approximately 1750 kg m™ in summer. This value is notably higher than the 1500 kg m™ assumed in the

original inverse-closure approach. Both methods produced optimized k,., values between 0.05 and 0.07,

depending on the season. Overall, we obtained a reasonable estimate of optimized k.o however, due to certain
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335 unknown factors, the optimized p,gvalues remain physically implausible. In contrast, method (c) produced highly

336  consistent and realistic results, as summarized in the table below.

337  Table S12: Median of optimized quantities in different seasons when morg ait, pPorg and xorg are considered the for

338 optimization while not accounting for variability of size distribution lognormal parameters

Kaitken Kaccumulation Ké‘itgke“ Kﬁﬁg’mulaﬁon Porg (kg m™)
Spring 0.16 0.24 0.07 0.07 1228.56
Summer 0.15 0.18 0.07 0.07 1304.12
Autumn 0.13 0.23 0.07 0.08 1307.69
Winter 0.11 0.26 0.06 0.07 1224.46
339
340
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