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 2 
Figure S1  (a) Lognormal size distributions calculated from the fit parameters obtained after applying the algorithm by Hussein 3 
et al. (2005) on observed size distributions. The solid lines represent the median values, while the shading indicates the 4 
percentiles. (b) Fitted versus observed total particle number concentration.  5 
 6 

 7 
Figure S2  Number of data points for each season.  8 
 9 

 10 
 11 
Figure S3 Monthly variation of activation diameter (Dact) for different supersaturation levels (SS) derived from aerosol number 12 
size distributions and observed CCN concentration. The plots display the median values (solid lines) and the corresponding 13 



 2 

25th to 75th percentile range (error bars). Each panel represents a different supersaturation level ranging from 0.1% to 1.0%. 14 
The x-axis shows the months of the year, while the y-axis indicates Dact. Error bars represent the variability within each month. 15 
 16 
 17 
Table S1. Median activation diameters (Dact) in nanometers by season: 18 

Seasons Dact at SS = 

0.1% 

Dact at SS = 

0.2% 

Dact at SS = 

0.3% 

Dact at SS = 

0.5% 

Dact at SS = 

1.0% 

Spring 206 127 100 80 54 

Summer 224 135 105 82 57 

Autumn 224 137 109 84 56 

Winter 206 129 104 82 55 

 19 
 20 

S1. Calculation of mass fraction of organic nitrate 21 
 22 

We have used the fragmentation pattern of nitrate in the ACSM to determine whether the detected nitrate 23 
is from ammonium nitrate or organic nitrate. The idea is based on Farmer et al. (2010) and in a nutshell, ammonium 24 
nitrate will yield a higher fraction of NO!" as opposed to NO	" compared to organic nitrate. NO!" and NO	" are the 25 
main peaks where nitrate will be distributed in. the fraction of nitrate that would be from organic nitrates (𝑓$%). 26 
The formula as mentioned in Farmer et al., 2010 is: 27 
 28 
 𝑓$% =

(𝑅&'( − 𝑅)%) × (1 + 𝑅$%)
(𝑅$% − 𝑅)%) × (1 + 𝑅&'()

, (S1) 

 29 
- 𝑓$% is the fraction of nitrate that is from organic nitrates 30 
-  𝑅&'( is the NO	": NO!" from ACSM measurements (nitrate fractions of m/z 30 and m/z 46) 31 
-  𝑅)% is the NO	": NO!" that the AN calibration would yield 32 
- 𝑅$% is the NO	": NO!" for pure organic nitrate 33 

 34 
Here, it is assumed that 𝑅)% = 2 since this would limit the number of negative values for 𝑓$%, when 𝑅$% = 10. 35 
The 𝑅$% = 10 is to be expected from the NO3 oxidation of 𝛂-pinene, which is assumed as a major source of ON 36 
at SMEAR II.  Finally, using Eq. S1 with the 𝑅)% and 𝑅$% constants for 2016 onwards, a conservative guess for 37 
the time series for 𝑓$% can be derived (Fig. S4). As 𝑓$% exhibits a clear, and rather consistent seasonality, a seasonal 38 
mask could be retrieved using day-of-the year -based 3-month running median (Fig. S4). This day-of-the-year 39 
based mask is used further to estimate how much of the measured nitrate was present as ON and AN (the 40 
ammonium nitrate mass fraction fAN = 1 – fON). 41 
                          42 
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 43 
Figure S4 Mask determining how much of the NO3 ion is organic nitrate, and how much ammonium nitrate. 44 
 45 

                   46 
Figure S5  Predicted ammonium ion (concentration necessary to achieve ion balance within the particles) and observed mass 47 
concentration of ammonium ion. 48 
 49 
S2. Demonstration of how scaling works 50 
 51 

In this section, we describe the method (also referenced in Sect. 2.2.3 of the main article) used to scale 52 
the fitted size distribution to match the observations. This ensures that the total particle concentration, as well as 53 
the number of particles in each bin of the reconstructed size distribution (derived from fitted bimodal lognormal 54 
parameters), remains consistent with the observed size distribution (see Fig. S6). As a result, whether we use the 55 
original observed size distribution or the fitted bimodal size distribution when applying bulk chemical 56 
composition, the predicted CCN spectra remain the same. During scaling process, for each bin, the observed 57 
concentration is compared to the sum of the two fitted modes. If only one mode contributes, its concentration is 58 
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adjusted directly to match the observed value. When both modes contribute, the difference between observed and 59 
fitted totals is distributed proportionally based on each mode's relative contribution. 60 

To better understand the process, scaling is explained in the steps as follows: 61 

We have (in cm-3): 62 

𝑁&'(,+ : Observed concentration in bin i 63 

𝑁,+-,)+-,+ : Fitted concentration for Aitken mode in bin i 64 

𝑁,+-,.//,+ : Fitted concentration for accumulation mode in bin i 65 

𝑁(/.012,)+-,+: Scaled concentration for Aitken mode in bin i 66 

𝑁(/.012,.//,+: Scaled concentration for accumulation in bin i 67 

The scaling follows these steps: 68 

Step 1: Scaling in the size distribution where only the Aitken mode has particles (𝑁,+-,.//,+	= 0) 69 

 𝑁(/.012,)+-,+ = 𝑁,+-,)+-,+ + (𝑁&'(,+ −𝑁,+-,)+-,+) (S2) 

 𝑁(/.012,.//,+ = 0 (S3) 

Step 2: Scaling in the size distribution where only the accumulation mode has particles (𝑁,+-,)+-,+	= 0) 70 

 71 
 𝑁(/.012,.//,+ = 𝑁,+-,.//,+ + (𝑁&'(,+ −𝑁,+-,.//,+) (S4) 

 𝑁(/.012,)+-,+ = 0  

 72 

Step 3: Scaling where both modes have contributions to the number of particles  (𝑁,+-,)+-,+	 ≠ 0, 𝑁,+-,.//,+ ≠ 0); 73 
Compute the fractional contributions of each mode 74 

fractional contribution of Aitken mode, 𝒳13 =	
𝑁,+-,)+-,+	

𝑁,+-,)+-,+ 	+ 𝑁,+-,.//,+
 (S5) 

fractional contribution of accumulation mode, 𝒳23 =	
𝑁,+-,.//,+

𝑁,+-,)+-,+ 	+ 𝑁,+-,.//,+
 (S6) 
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scaling factor, 𝒳3 = 𝑁&'(,+ − (𝑁,+-,)+-,+ +𝑁,+-,.//,+)	
 (S7) 

apply scaling, 𝑁(/.012,)+-,+ =	𝑁,+-,)+-,+ + 	𝒳3 . 𝒳13 (S8) 

 75 
 𝑁(/.012,.//,+ =	𝑁,+-,.//,+ + 	𝒳3 . 𝒳23 (S9) 

 76 

 77 

 78 
Figure S6  An example of the size distribution scaling procedure. Bimodal fitting is done first and then the scaling aligns the 79 
reconstructed lognormal size distributions (black line in the left panel i.e. sum of fitted modes) with the observed distribution 80 
across binned diameters (Dp).  81 
 82 

 S3. Conservation of mass 83 
 84 

In both the Nelder–Mead and DREAM-MCMC optimizations, the total aerosol mass is conserved across 85 
all chemical species (organics, inorganics, and eBC). Additionally, the eBC mass is fixed in both the Aitken and 86 
accumulation modes. This constraint reduces the optimization problem: we only vary the mass of one species 87 
(e.g., organics in the Aitken mode), while the remaining components are derived from conservation laws. For a 88 
given time step in the time series, let,  𝑚)+-

-&- and 𝑚.//
-&-  are the total masses in Aitken and accumulation mode, 89 

respectively, obtained from bimodal size distribution and mass fractions. Similarly, let 𝑚45,)+- and 𝑚45,.// are the 90 
fixed eBC masses, then for each 𝑚&67,)+- the optimization algorithm explore: 91 
 92 

 𝑚+8&67,)+- =	𝑚)+-
-&- − (𝑚&67,)+- +𝑚45,)+-) 

𝑚&67,.// =	𝑚&67
-&- −𝑚&67,)+- 

𝑚+8&67,.// =	𝑚.//
-&- − (𝑚&67,.// + 𝑚45,.//) 

(S10) 

(S11) 

(S12) 

 93 
S4. Bayesian inference and MCMC 94 
 95 
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Bayesian inference is a rigorous method for quantifying uncertainty in model parameters (see also see 96 
Gelman et al., 2013), using probability statements. Unknown parameters are treated as random variables with 97 
some joint posterior probability distribution, which can be written using Bayes law as: 98 
 99 

 
𝑝(𝜃|𝑌) = 	

𝑝(𝜃)𝐿(𝑌|θ)
𝑝(𝑌)  (S13) 

 100 
where 𝑝(𝜃) is the prior distribution which encompasses what is known about the parameters prior to observing 101 
any data, 𝐿(𝑌|θ) is the likelihood function which measures how well the model fits observed data, and  102 
 103 

 𝑝(𝑌) = 	;𝑝(𝜃)𝑝(𝑌|θ)dθ (S14) 

 104 
is the marginal distribution of Y, which represents the probability of observing Y given all possible parameter 105 
values 𝜃. The result of conditioning the prior distribution with some observations is the posterior probability 106 
distribution 𝑝(𝜃|𝑌), which represents the updated probability of the model parameters. Bayesian inference is 107 
therefore a process of creating a probability model and iteratively updating that model based on some observations, 108 
resulting in a best estimate of the parameters and knowledge about their uncertainty, sensitivity, and correlation 109 
(in the case where 𝜃 is vector-valued). 110 
 111 
Monte Carlo Markov Chain (MCMC) simulations are a methodology for sampling from posterior distributions. 112 
Generally, they involve repeatedly and sequentially sampling 𝜃 such that each new draw depends only on the 113 
previous sample and therefore forms a Markov chain, and correcting those draws so that the chain converges to 114 
the target distribution. Many different algorithms have been proposed for generating and correcting chain samples. 115 
Here we use the DiffeRential Evolution Adaptive Metropolis Markov Chain Monte Carlo (DREAM-MCMC) 116 
algorithm (Vrugt et al. 2009). This algorithm runs multiple chains simultaneously and adaptively updates the 117 
proposal distribution using a randomized subset of the chains’ joint history. It also supports large proposal jumps 118 
and outlier rejection during the initial burn-in phase, which accelerate convergence. This type of self-adaptive 119 
evolutionary strategy is particularly well suited to heavy-tailed or multi-modal posteriors, such as in this study 120 
where different combinations of aerosol chemical composition and size distributions parameters could result in 121 
similar CCN spectra.  122 
 123 
S5. Chain evolution in DREAM-MCMC 124 

As mentioned in sect. 2.2.3.1, we ran five DREAM-MCMC chains with 40,000 sampling steps each for 125 
each CCN observation window. Figure S7 shows that for both windows there is an overprediction of the CCN 126 
spectra when bulk composition is used, which is mostly corrected with the DREAM-MCMC optimized 127 
parameters, showing that when size-segregated composition is combined with variability in the lognormal size 128 
distribution parameters, most of the discrepancy between observed and predicted CCN can be resolved. Figures 129 
S8 and S9 show examples of the chain evolution and the resulting posterior distributions for two distinct cases. 130 
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                  131 
Figure S7. Observed and optimized CCN spectra. The black line shows the observed spectra, the blue line represents the 132 
optimized spectra using the Nelder–Mead method with only size-segregated chemical composition as the optimized parameter, 133 
and the red line represents the DREAM-MCMC optimization where both size-segregated composition and size distribution 134 
parameters are optimized. Panel (a) corresponds to 2019-05-11 05:00:00, and panel (b) corresponds to 2019-10-15 07:00:00.  135 
 136 

The first example (Figure S7a and Figure S8) corresponds to a spring-time window, specifically 2019-05-11 137 
05:00:00. There is a higher total CCNc, and the DREAM-MCMC improves the closure at all super-saturations. 138 
All 5 chains converge well with 𝑅=-hat values very close to 1 for all parameters. The posterior distributions are 139 
relatively compact with the chain evolution indicating stable convergence, with broader distributions for morg,Ait 140 
(in this note denoted as Morg1) and NAit (in this note denoted as N1). There is a significant shift in the median of the 141 
posterior distribution of Morg1 compared to the initial guess, whereas the posteriors of the size distribution 142 
parameters are centred on values very close to the median of the observations, suggesting that an increased mass 143 
fraction of organics in the Aitken mode is the key to better CCN closure for this time-step. However, the posterior 144 
distribution for Morg1 is relatively wide, indicating less sensitivity to the exact value compared to the very tight 145 
posterior distributions for D1, N1, and D2 (the diameters and number concentrations corresponding to Aitken and 146 
accumulation modes), which suggest that the closure is very sensitive to those three parameters.  147 

In the second example (Figure S7b and Figure S9) the situation is more complex. This corresponds to a fall 148 
window, specifically 2019-10-15 07:00:00, where the total CCNc is lower. While DREAM-MCMC significantly 149 
improves the closure, it struggles more compared to the previous case, over-predicting at 0.1% SS and 150 
underpredicting at 0.2% and 0.3%. The chains show slower mixing and broader posteriors for several parameters, 151 
particularly Morg1, N1 and D2. In this case medians of the posterior distributions are significantly shifted from the 152 
initial guesses for all parameters. The 𝑅=-hat values using all 5 chains are below 1.5 for all parameters but are 153 
larger for N1 and D1 (approx. 1.3 for both), indicating poorer mixing. Wider posteriors indicate possibly weak 154 
identifiability, meaning that multiple parameter combinations can yield similarly good agreement with the 155 
observed CCN spectra, pointing to stronger parameter correlations in the posterior. Here, Morg1 is more poorly 156 
constrained than in the first case, but the number concentration parameters (N1 and N2) still play a more dominant 157 
role in reducing the CCN prediction. 158 

 159 
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                   160 
Figure S8. Chain evolution (right) and posterior distributions of the optimized parameters (left) from the DREAM-MCMC 161 
run. Each plot shows five parallel chains with 40,000 sampling steps. The vertical dashed line in the right panels marks the 162 
end of the burn-in period, and the posterior distributions on the left are taken from the final samples after burn-in which are 163 
used for posterior inference. Results correspond to observation 4200 (2019-05-11 05:00:00). 164 
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           165 
Figure S9. Chain evolution (right) and posterior distributions of the optimized parameters (left) from the DREAM-MCMC 166 
run. Each plot shows five parallel chains with 40,000 sampling steps. The vertical dashed line in the right panels marks the 167 
end of the burn-in period, and the posterior distributions on the left are based on the final samples after burn-in which are used 168 
for posterior inference. Results correspond to observation 5813 (2019-10-15 07:00:00). 169 
 170 
S6. Distribution of median absolute deviation (MAD) 171 
 172 

Figure S10 shows the probability density of median absolute deviation, MAD values fitted with chi-173 
squared distributions for both the Aitken and accumulation modes. The results indicate that the variability is 174 
generally small, with distributions strongly centered close to zero and narrow tails. The fitted chi-squared 175 
parameters suggest that fluctuations in diameter and sigma are low, whereas number concentrations show 176 
comparatively larger spread. Overall, this analysis confirms that the derived parameters remain fairly stable within 177 
CCN cycle period, with occasional variability in particle number concentration. 178 
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 179 
Figure S10. Chi-squared probability density functions (PDFs) fitted to the median absolute deviation (MAD) values of aerosol 180 
size distribution parameters calculated with respect to median of corresponding parameters during CCN cycle. The data 181 
represent entire 5 years period between 2016 to 2020. Panels show Aitken mode (top row) and accumulation mode (bottom 182 
row) MADs for mode diameter, geometric standard deviation (σ), and particle number concentration. The fitted parameters 183 
(degrees of freedom, ν, and scale) are reported in the legends. The fits are constrained to non-negative values to reflect the 184 
definition of MAD. 185 
 186 
S7. Distribution of normalized root mean square error (NRMSE) over brute-force sampled mass fraction 187 
bins of organic in Aitken mode (𝑓ₒᵣg, Aitken) 188 

 189 
To investigate how different combinations of mass fractions of different species in the Aitken and 190 

accumulation modes influence the model performance, we complemented the inverse modelling algorithms with 191 
a brute-force sampling approach. This allowed us to explore the full parameter space and examine the variation 192 
in normalized root mean square error (NRMSE) between measured and modelled CCN spectra across the entire 193 
dataset (2016-2020). Figure S11 illustrates the distribution of NRMSE values over this parameter space with 194 
respect to all samples of mass fraction of organics in Aitken mode (𝑓ₒᵣg, Aitken).  195 
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                   196 

 197 
Figure S11 Violin plots of the normalized root mean square error (NRMSE) between measured and modelled CCN spectra 198 
during optimization, grouped by the mass fraction of organics in the Aitken mode (𝑓ₒᵣg, Aitken). 199 
 200 
S8. Calculation of activation diameter 201 
 202 

The activation diameter, often referred to as the critical diameter, represents the minimum size of 203 
particles that can activate into cloud droplets at a given SS. This method estimates the activation diameter based 204 
on observed cloud condensation nuclei concentrations and particle number size distribution data. 205 

Methodology 206 

1. For a given CCN concentration at a particular supersaturation level:  207 
o Find the bin where the cumulative particle concentration is either equal to or exceeds the CCN 208 

concentration (upper bound). 209 
o Find the size bin where the cumulative particle concentration just falls below the CCN 210 

concentration. 211 
2. Linear interpolation between size bins: 212 

o The activation diameter lies between the sizes associated with the lower and upper bounds. 213 
Assuming that particle concentration changes linearly between these bins: 214 

 Dact = D0 + 9!"#	:9%	
9&:9%

 ×( 𝐷; −𝐷<) (S15) 

Where: 215 
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• Dact  : Activation diameter 216 
• D0, D1: Diameters corresponding to the lower and upper cumulative concentrations, N0 and N1, 217 

respectively. 218 
• NCCN: Observed CCN concentration. 219 
• If the cumulative concentrations at the lower and upper bounds are identical (N0 = N1), the Dact 220 

is assigned the diameter of the lower bound (D0). 221 

 222 

 223 

Figure S12 Time series of sulfate ion mass concentration measured by the ACSM. Scatter points represent individual sulfate 224 
ion concentration values, while the black solid line indicates the linear regression fit. The slope and p-value of the regression 225 
are provided in the legend. The statistical significance of the trend is assessed at the 95% confidence level (p <  0.05). 226 

 227 

 228 
Figure S13 Mass fractions of various chemical species during different seasons. 229 
 230 
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            231 
Figure S14  Monthly median CCN concentrations at different supersaturations with shaded areas indicating the interquartile 232 
range. 233 
 234 
Table S2. Geometric mean bias (GMB) and Pearson’s correlation coefficient (R) corresponding to different methods and 235 
supersaturations 236 

Methods GMB (R)  

 SS = 0.1% 

GMB (R) 

SS = 0.2% 

GMB (R)  

SS = 0.3% 

GMB (R)  

SS = 0.5% 

GMB (R)  

SS = 1.0% 

𝜿𝐛𝐮𝐥𝐤 1.56 (0.89) 1.19 (0.93) 1.19 (0.93) 1.34 (0.92) 1.34 (0.89) 

𝜿𝟎.𝟏𝟖 1.35 (0.85) 1.11 (0.93) 1.11 (0.93) 1.24 (0.93) 1.26 (0.90) 

𝜿𝐨𝐩𝐭 1.53 (0.89) 1.13 (0.93) 1.12 (0.94) 1.21 (0.94) 1.20 (0.93) 

𝜿𝐨𝐫𝐠 = 𝟎 0.92 (0.83) 0.87 (0.87) 0.94 (0.87) 1.086 (0.89) 1.938 (0.87) 

𝜿𝐌𝐂𝐌𝐂 1.32 (0.85) 0.95 (0.97) 0.96 (0.99) 1.05 (0.99) 0.99 (0.99) 

  237 
 238 

 239 
Figure S15 Scatter plot illustrating the geometric mean bias (GMB) and Pearson correlation for different supersaturation (SS) 240 
levels, comparing four methods: 𝜅'L0M, 𝜅<.;N, and 𝜅&O-, 𝜅&67 = 0. Each marker represents a different SS level, with size 241 
proportional to SS level, ranging from 0.1% to 1.0%. Bias is presented on the x-axis and correlation on the y-axis, with vertical 242 
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lines indicating perfect prediction (bias = 1). The plot shows the performance of each method across various SS levels, with 243 
annotations indicating underprediction (bias < 1) and overprediction (bias > 1). 244 
 245 
S9. Performance Metrics of Various CCN Prediction Methods 246 

 247 
In figure S15, we looked at GMB but importantly, another quantity, the standard deviation (SD) of GMB 248 

provides insight into the robustness of each method: a lower SD indicates that the bias is consistent across cases, 249 
while a higher SD suggests larger variability in performance (Fig. S16). This makes it a key metric to consider 250 
when evaluating the stability of CCN prediction methods. 251 
 252 

 253 
Figure S16 Comparison of CCN prediction performance at supersaturations of 0.5 % and 1.0 % using different methods. 254 
Metrics shown are geometric mean bias (GMB), its standard deviation (SD), and correlation between predicted and observed 255 
CCN. 256 
 257 
The results show that DREAM-MCMC (𝜅P5P5) performs best overall, with a geometric mean bias very close to 258 
unity, extremely high correlation with observations, and the lowest spread. This indicates that it provides the most 259 
accurate and stable CCN predictions. The 𝜅&O- method, which optimizes only size-segregated composition, ranks 260 
second: it achieves high correlation and relatively low variability, though the bias remains slightly above one, 261 
suggesting moderate overprediction. 𝜅&67 = 0 falls in the middle, with moderate bias, correlation, and variability, 262 
making it balanced but not particularly strong in any metric. The fixed κ = 0.18 approach performs similarly to 263 
𝜅&67 = 0 but is slightly weaker, with somewhat lower correlation. Finally, 𝜅'L0M  performs the worst, showing the 264 
highest bias and systematic overprediction of CCN, along with only moderate correlation and spread. 265 
 266 
 267 
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 268 
Figure S17. Seasonal variability of 𝜅 for Aitken and accumulation mode particles derived using Nelder–Mead optimization 269 
(left) and DREAM–MCMC inversion (right). Boxes represent interquartile ranges, whiskers the 5th–95th percentiles, and 270 
horizontal lines the medians. 271 
 272 
 273 
Table S3. Median of optimized mass fractions of various chemical species in Aitken mode in different seasons 274 

 Spring Summer Autumn Winter 

Organics 0.89 0.92 0.87 0.83 

Inorganics 0.0017 0.0001 0.0001 0.0001 

eBC 0.10 0.075 0.13 0.17 

 275 
Table S4. Median of optimized mass fractions of various chemical species in accumulation mode in different 276 
seasons 277 

 Spring Summer Autumn Winter 

Organics 0.54 0.71 0.57 0.46 

Inorganics 0.37 0.23 0.32 0.40 

eBC 0.09 0.06 0.10 0.14 

 278 
Table S5. Mean of optimized mass fractions of various chemical species in Aitken mode in different seasons 279 

 Spring Summer Autumn Winter 

Organics 0.70 0.75 0.72 0.69 

Inorganics 0.20 0.19 0.16 0.16 

eBC 0.1 0.06 0.11 0.15 

 280 
Table S6. Mean of optimized mass fractions of various chemical species in Accumulation mode in different 281 
seasons 282 

 Spring Summer Autumn Winter 

Organics 0.54 0.65 0.55 0.44 
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Inorganics 0.37 0.28 0.33 0.41 

eBC 0.09 0.06 0.11 0.15 

 283 
Table S7. Median mass fractions by group and optimization method. 284 
 285 

Groups Organics 

(Aitken) 

Inorganics 

(Aitken) 

BC 

(Aitken) 

Organics 

(Acc) 

Inorganics 

(Acc) 

BC  

(Acc) 

κAitken > κaccumulation 

(MCMC) 
0.11 0.78 0.11 0.69 0.23 0.08 

κAitken > κaccumulation 
(Nelder-Mead) 

0.0004 0.87 0.12 0.68 0.23 0.087 

κaccumulation > κAitken 
(MCMC) 

0.87 0.04 0.09 0.54 0.37 0.088 

κaccumulation > κAitken 
(Nelder-Mead) 

0.91 0.0001 0.09 0.09 0.58 0.087 

 286 
Table S8. Median κ and fraction of data points by group and optimization method. 287 
 288 

Groups Median κAitken Median κaccumulation Fraction of data 

κAitken > κaccumulation (MCMC) 0.47 0.21 0.54 

κAitken > κaccumulation (Nelder-Mead) 0.50 0.20 0.23 

κaccumulation > κAitken (MCMC) 0.13 0.27 0.46 

κaccumulation > κAitken (Nelder-Mead) 0.11 0.26 0.77 

 289 
 290 
S10. Insights on effect of the assumption of fixed eBC mass in both modes 291 

 292 
 The CCN spectra obtained using bulk chemical composition generally depicts overprediction from the 293 

observations, with the largest bias at both lowest supersaturation (0.1%) and the highest supersaturation (1.0%). 294 
A way to reduce this overprediction is to have a size-segregated composition that makes the Aitken mode as low 295 
in hygroscopicity as possible. As a conservative approach, when eBC is fixed only in accumulation mode (leaving 296 
no eBC mass in Aitken mode), the 5 year averaged (median) NRMSE remains almost similar at 0.28 (a little on 297 
higher side), while Aitken kappa is a bit higher as an non-hygrosocopic element i.e. eBC is now completely is 298 
accumulation mode. In another approach, we allowed eBC to vary as an additional optimization parameter along 299 
with organics in the Aitken mode instead of keeping its mass fraction fixed in both modes. As expected, this 300 
adjustment lowers the NRMSE from 0.28 to 0.23, while the optimized 𝜅 remains nearly unchanged, but a little on 301 
lower side than the setup we use (see Table S10). Interesting to note that, this setup suggest that there should be 302 
70% eBC in Aitken mode which seems unrealistic. Complementary results from DREAM-MCMC optimization 303 
(optimizing modal BC mass fraction while considering variability of lognormal parameters of size distribution 304 
during CCN cycle, see Table S11) of the same problem suggests similar results with around on an average 41% 305 
BC in Aitken mode – again a very high number considering the expected aerosol sources at the cite. 306 
 307 
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 308 
Table S9. Median of optimized mass fractions of various chemical species in Aitken and accumulation mode 309 
when all eBC are kept in accumulation mode – results from Nelder-Mead 310 

Organics 

(Aitken) 

Inorganics 

(Aitken) 

eBC 

(Aitken) 

Organics 

(accumulation) 

Inorganics 

(accumulation) 

eBC 

(accumulation) 

0.99 0.01 0.00 0.59 0.43 0.10 

 311 
Table S10. Median of optimized κ in different seasons when all eBC are kept in accumulation mode– results from 312 
Nelder-Mead 313 

 Spring Summer Autumn Winter 

κAitken 0.12 0.12 0.12 0.12 

κaccumulation 0.27 0.21 0.24 0.29 

 314 
Table S11. Median of optimized mass fractions of various chemical species in Aitken and accumulation mode 315 
when eBC is also an optimized parameter 316 

 Organics 

(Aitken) 

Inorganics 

(Aitken) 

eBC 

(Aitken) 

Organics 

(accumulation) 

Inorganics 

(accumulation) 

eBC 

(accumulation) 

Nelder-

Mead 

0.26 0.046 0.70 0.62 0.31 0.07 

MCMC 0.32 0.27 0.41 0.63 0.30 0.07 

 317 
S11. Optimizing organic properties 318 
 319 

We conducted additional inverse-closure sensitivity studies to assess how the assumed organic aerosol 320 
properties influence the optimized parameters. Three types of inverse-closure tests were performed: 321 

a) Using bulk-composition but optimizing only the organic density, 𝜌&67 and organic hygroscopicity 322 

parameter, 𝜅&67 323 

b) Optimizing 𝜌&67 and 𝜅&67	while also accounting for variability of size distribution lognormal parameters 324 
during CCN cycles 325 

c) Optimizing morg,Ait, 𝜌&67 and 𝜅&67	 but not accounting for variability of size distribution lognormal 326 
parameters during CCN cycles 327 

In all tests, 𝜅&67 was varied between 0.05 and 0.15, while 𝜌&67 ranged from 1000 to 3000 kg m⁻³. Method (a) 328 
resulted in a lower NRMSE but yielded a median optimized organic density of 1000 kg m⁻³, which appears 329 
unrealistic. Method (b) produced a slightly higher NRMSE (0.085 compared to 0.079 from 𝜅P5P5) but provided 330 
a more realistic optimized organic density of 2179 kg m⁻³, exhibiting clear seasonal variability, with a minimum 331 
of approximately 1750 kg m⁻³ in summer. This value is notably higher than the 1500 kg m⁻³ assumed in the 332 
original inverse-closure approach. Both methods produced optimized 𝜅&67 values between 0.05 and 0.07, 333 
depending on the season. Overall, we obtained a reasonable estimate of optimized 𝜅&67 however, due to certain 334 
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unknown factors, the optimized 𝜌&67values remain physically implausible. In contrast, method (c) produced highly 335 
consistent and realistic results, as summarized in the table below. 336 

Table S12: Median of optimized quantities in different seasons when morg,Ait, rorg and κorg are considered the for 337 
optimization while not accounting for variability of size distribution lognormal parameters 338 

 𝜿𝐀𝐢𝐭𝐤𝐞𝐧 𝜿𝒂𝒄𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝜿𝐨𝐫𝐠𝐀𝐢𝐭𝐤𝐞𝐧 𝜿𝐨𝐫𝐠𝐚𝐜𝐜𝐮𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝝆𝐨𝐫𝐠	(kg m⁻³) 

Spring 0.16 0.24 0.07 0.07 1228.56 

Summer 0.15 0.18 0.07 0.07 1304.12 

Autumn 0.13 0.23 0.07 0.08 1307.69 

Winter 0.11 0.26 0.06 0.07 1224.46 
 339 
 340 


