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Abstract. The contribution of natural aerosol particles from boreal forests to total aerosol loadings may in-
crease with reduction in anthropogenic emissions. Aitken and accumulation mode particles in boreal regions
differ significantly in hygroscopicity, and ignoring this size dependence can cause large uncertainty in Cloud
Condensation Nuclei (CCN) prediction. We applied «-Kohler theory to a multi-year dataset (2016-2020) from
Hyytiéla, Finland, to evaluate different representations of aerosol chemical composition for CCN prediction.
Overpredictions by forward closures using either bulk chemical composition from an Aerosol Chemical Spe-
ciation Monitor (ACSM) or a constant x =0.18 were mitigated to a great extent by optimizing size-resolved
composition using two inverse modeling approaches: (1) Nelder—Mead method with the size distribution fixed
to its median during each 2h CCN measurement cycle, and (2) MCMC (Markov Chain Monte Carlo) account-
ing also for the variability in the size distribution during each cycle. Both methods improved closure at SS =
0.2 %—1.0 % (with Geometric Mean Bias GMB values 1.12-1.20 and 0.95-1.05, respectively), with moderate
improvement at 0.1 % (GMBs of 1.53 and 1.32, respectively). The Aitken mode was enriched in organics in
77 % of cases using method (1) and 46 % using method (2) — with typical « values of ~0.1 for Aitken and
~ (.3 for accumulation modes. The results generally align with known size-dependent chemical composition
in Hyytiédld and indicate that variability in CCN hygroscopicity is largely driven by Aitken mode composition.
Our results demonstrate the potential of inverse CCN closure methods for obtaining valuable information of the
size-dependent chemical composition.

1 Introduction

Aerosol particles play a critical role in the formation of cloud
droplets. They serve as cloud condensation nuclei (CCN)
by lowering the energy barrier for heterogeneous nucleation
of water, thus promoting cloud droplet activation at atmo-
spheric levels of water vapor supersaturations SS (Kohler
1936; Pruppacher and Klett, 2010). The subset of aerosol par-

ticles that act as CCN affects the cloud droplet number con-
centration (CDNC), thus changes in the CCN concentration
(Ncen) may modulate cloud radiative properties and lifetime
— phenomena known as the first (Twomey, 1974) and sec-
ond (Albrecht, 1989) indirect aerosol climate effects. The pa-
rameterization schemes related to cloud droplet formation in
global climate models (e.g., Abdul-Razzak and Ghan, 2000,
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2002; Nenes and Seinfeld, 2003; Fountoukis and Nenes,
2005; Barahona et al., 2010; Betancourt and Nenes, 2014)
rely on estimates of CCN concentrations which are calcu-
lated based on simplified treatment of aerosol size distribu-
tions, chemical compositions and the Kohler theory, leading
to varying degrees of uncertainty depending on the specific
scheme used (Simpson et al., 2014). Enhanced understand-
ing of aerosol particles and their role as CCN may be used to
improve representations of aerosol-cloud interactions (ACI)
in global climate models, which remain a significant source
of uncertainty in estimates of total anthropogenic radiative
forcing over the industrial period (IPCC, 2023; Seinfeld et
al., 2016).

Ncen and CDNC are primarily determined by aerosol
properties and the drivers of maximum supersaturation
(SSmax) fluctuations (e.g. updraft velocities, radiative cooling
rates, water vapor concentration field see e.g. Kohler, 1936;
Rogers and Yau, 1989; Reutter et al., 2009; Anttila et al.,
2012; Partridge et al., 2012), both of which are known to
display large spatial and temporal variability. Many studies
have evaluated Nccn predictions from Kohler theory against
observations of aerosol particle size distributions, chemical
composition and meteorological parameters in various envi-
ronments. These investigations, often termed aerosol-CCN
closure studies or hygroscopicity-CCN closure studies, will
hereafter be referred as “closure studies”. Typically, such
studies have involved forward modeling, where observational
input data (e.g., aerosol size distribution, composition, and
hygroscopicity) is utilized to predict Nccn using the Koh-
ler theory. The model outputs are then compared directly
with observed CCN data to assess consistency and evaluate
the predictions (e.g., Bougiatioti et al., 2009; Martin et al.,
2011; Rejano et al., 2024). In contrast, relatively few studies
have leveraged inverse modeling frameworks, which use ob-
served CCN data to infer the properties of the aerosol popu-
lation or model parameters. In these approaches, CCN mea-
surements are treated as a reference (while also accounting
for observational uncertainty), and model parameters such as
surface tension, hygroscopicity, and size distribution are ad-
justed to reproduce the observations. This not only enables
the retrieval of aerosol population characteristics from CCN
data but also provides a means to rigorously test model as-
sumptions and quantify the influence of uncertain calibration
parameters on predicted CCN concentrations (e.g., Partridge
et al., 2011, 2012; Lowe et al., 2016). In this study we in-
tend to use a CCN closure study as a means to infer informa-
tion on the size-dependent chemical composition of CCN-
sized aerosol particles, to enhance bulk chemical composi-
tion measurements.

Kohler theory (Kohler, 1936) has been widely used in ear-
lier studies as the standard framework for predicting CCN
activation and proved effective under most relevant atmo-
spheric conditions, provided that there was accurate knowl-
edge of the aerosol number size distribution, size-dependent
chemical composition, and SS. To simplify the representa-
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tion of aerosol hygroscopic growth and CCN activity, Petters
and Kreidenweis (2007) introduced the non-dimensional hy-
groscopicity parameter «, to facilitate comparisons of data
sets with varying levels of detail for the aerosol chemical
composition. These theoretical frameworks along with infor-
mation about particle number size distributions and chemical
composition are utilized to calculate the activation diameter
(Dgy¢y) of the dry particles and finally the CCN concentration
at a particular ambient SS. A successful closure study aims
for the modelled CCN and measured CCN to be comparable
within measurement uncertainties and is notably influenced
by the accuracy of the relevant measurements and any theo-
retical approximations.

The aqueous phase thermodynamics of soluble inorganic
salts like ammonium sulfate ((NH4)2SO4), sodium chlo-
ride (NaCl), ammonium bisulfate (NH4HSO4) and ammo-
nium nitrate (NH4NO3) are considered to be relatively well-
understood (e.g., Zhang et al., 2000; Nenes et al., 1998,
1999), and yield accurate predictions of CCN activation
of these compounds using Kohler theory. However, atmo-
spheric aerosol particles also typically contain a significant
organic mass fraction (Zhang et al., 2007), originating from
various sources. In the atmosphere, organic aerosol typically
forms a complex mixture with inorganic aerosol species. The
organic component evolves over time modifying both the
mass concentration and the properties of the aerosol (Robin-
son et al., 2007; Jimenez et al., 2009). Organic aerosol is
comprised of a wide variety of molecules (e.g., Hallquist et
al., 2009; Noziere et al., 2015; Ditto et al., 2018) with differ-
ent properties, such as solubility, volatility and surface activ-
ity (e.g., Hodzic et al., 2014; Ye et al., 2016; Huang et al.,
2024; El Haber et al., 2024). While many of the atmospheric
organic compounds are water-soluble, their hygroscopicity
is typically lower than that of inorganic salts (e.g., Pohlker et
al., 2023). Nevertheless, organic aerosol plays a significant
role in determining (Nccn) and CDNC, especially because
organic aerosol formation drives aerosol particle growth to-
wards CCN-relevant sizes in many environments (e.g., Riip-
inen et al., 2011; Mohr et al., 2019; Croft et al., 2019; Zheng
et al., 2020; Qiao et al., 2021). Importantly, some organic
aerosol properties beyond hygroscopicity such as solubility
or surface activity, may enhance the likelihood of an Aitken
mode aerosol particle to serve as CCN (Lowe et al., 2019).
Historically, in studies where the organic aerosol contribu-
tion to the CCN activation was not adequately considered,
errors of up to an order of magnitude were observed between
predicted and measured Nccn in many environments (e.g.,
Bigg, 1986; Covert et al., 1998; Chuang et al., 2000; Rissman
et al., 2006; Quinn et al., 2008). This discrepancy highlights
the need to include organics in CCN closure studies. Stud-
ies incorporating organic aerosol effects demonstrated sig-
nificant improvements in closure as compared with attempts
considering inorganics alone (e.g., Broekhuizen et al., 2006;
Rose et al., 2008; Ervens et al., 2010; Gunthe et al., 2009;
Bougiatioti et al., 2009; Juranyi et al., 2010; Siegel et al.,
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2022). These findings underscore the importance of organics
in CCN prediction, particularly in air masses with substantial
freshly emitted primary biogenic or anthropogenic organic
vapors.

Boreal forests are environments where local biogenic
emissions act as a major source of aerosol particles, with
organic aerosol constituting 50 %—80 % of the observed
sub-micron aerosol mass (Heikkinen et al., 2020). This
dominance of organics results from the emission of bio-
genic volatile organic compounds (BVOCs) by the forests,
which promotes secondary organic aerosol (SOA) produc-
tion. Understanding the factors controlling Nccn above bo-
real forests is necessary for constraining the magnitude of
the climate feedbacks involving natural forest aerosols and
clouds, which are likely to increase in importance as anthro-
pogenic aerosol emissions decrease (see e.g., Paasonen et al.,
2013; Yli-Juuti et al., 2021; Blichner et al., 2024).

Héameri et al. (2001) utilized Hygroscopicity Tandem Dif-
ferential Mobility Analyzers (HTDMASs) during the BIO-
FOR campaign at the SMEAR II Hyytidld forest field sta-
tion in south-central Finland, to measure the hygroscopic
growth factors of aerosol particles at 90 % relative humid-
ity (RH), and reported Aitken mode particles (with growth
factors between 1.0 and 1.4) to be less hygroscopic than ac-
cumulation mode particles (growth factors ~ 1.6). Sihto et al.
(2011) studied the annual cycles of aerosol hygroscopicity
and CCN, finding the hygroscopicity at sub-saturated con-
ditions to be a good predictor of the CCN activity as well.
They concluded the average hygroscopicity parameter k to
be 0.18 (for SS values between 0.1 % and 1 % during July
2008 and June 2009) and therefore, the CCN-sized parti-
cles to be mostly organic, but to also contain more hygro-
scopic material such as ammonium sulfate (see also Cerully
et al., 2011). Paramonov et al. (2013) used a size-segregated
CCN observation data set collected between January 2009
and April 2012 from Hyytidld, which revealed that the me-
dian xexhibited significant variation depending on the SS and
hence particle size. Specifically, the median « was 0.41 at
0.1% SS and 0.14 at 1.0 % SS. At 0.1 % SS, only the upper
tail of the aerosol size distribution is activated, so the cor-
responding « represents the largest particles in the distribu-
tion — indicating them to contain more inorganic species as
compared with the smaller particles. In contrast, activation
at 1.0 % SS includes smaller particles, which are generally
more organic, resulting in a lower «. The size-dependence
of hygroscopicity was more pronounced during the winter
months compared to the summer. In a follow-up study, Para-
monov et al. (2015) identified a statistically significant dif-
ference in the hygroscopicity of Aitken and accumulation
mode particles in northern locations and concluded that the
assumption of a size-independent k potentially leads to a re-
curring overestimation in CCN predictions at supersatura-
tions above 0.6 % in the boreal environment. In the closure
study by Schmale et al. (2018), predictions using bulk chem-
ical composition data indeed led to an over-prediction (ge-
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ometric mean bias of 1.32 at SS=0.5%) of Nccn for the
period between January 2012 and June 2014.

In large-scale atmospheric models, the aerosol size dis-
tribution is often represented by a number of log-normal
modes, and Nccn are estimated from SSy,x based on dy-
namics (e.g., updraft) and physicochemical properties of the
aerosol modes — as the abundance of particles with variable
sizes and compositions influences the development of SS and
hence the CCN activation (e.g., Abdul-Razzak and Ghan,
2000). A number of studies (e.g., Sihto et al., 2011; Para-
monov et al., 2013; 2015; Bulatovic et al., 2021; Pohlker
et al., 2021; Lowe et al., 2019; Duplessis et al., 2024) have
demonstrated that Aitken mode particles can contribute sig-
nificantly to CDNC, particularly in clean conditions. There-
fore, constraints on the physicochemical properties of both
Aitken and accumulation mode particles are important for
predictions of Ncen and CDNC. Unfortunately, the stan-
dard methods used for measurements of aerosol chemi-
cal composition (e.g., Aerosol Chemical Speciation Moni-
tor ACSM; see Sect. 2.1.4) cannot typically separate accu-
mulation and Aitken mode composition. The few studies re-
porting size-segregated aerosol composition in forested en-
vironments suggest an enrichment of inorganics in the accu-
mulation mode, and higher mass fractions of organics in the
Aitken mode (Allan et al., 2006; Hao et al., 2013; Levin et al.,
2014; Timonen et al., 2008; Saliba et al., 2020). Studies in-
volving a full annual coverage suggest a more size-dependent
composition in early spring and winter (Levin et al., 2014;
Timonen et al., 2008) compared to the summer. These find-
ings are also qualitatively in line with the studies investigat-
ing the growth of Aitken mode particles in Hyytiil4, explain-
able with organic condensation (e.g., Riipinen et al., 2011
Mohr et al., 2019). Campaign-wise studies like Cubison et al.
(2008); Broekhuizen et al. (2006); Stroud et al. (2007); Meng
et al. (2014) used size-resolved Aerosol Mass Spectrome-
ter (AMS) data, which is typically sparse, to achieve CCN
closure in different environments, demonstrating that size-
dependent chemical composition of aerosol particles can of-
ten explain the apparent discrepancies between observed and
predicted CCN concentrations. Taken together, these results
suggest that observations of CCN concentrations have the po-
tential to be used in an inverse manner to constrain Aitken
and accumulation mode chemical compositions separately —
if information on the particle size distribution and an estimate
of the bulk chemical composition is available.

In this study, we employ long-term (2016-2020) concur-
rent measurements from the SMEAR II atmospheric moni-
toring site in the boreal forest (Hyytidld, Finland) to perform
inverse aerosol-CCN closures, where we optimize the modal
aerosol chemical composition using two approaches: (1) as-
suming a fixed size distribution set to the median values dur-
ing each CCN spectrum cycle applying a Nelder-Mead op-
timization method, and (2) allowing the size distribution pa-
rameters to vary within the observed variability during each
cycle and using Markov Chain Monte Carlo simulations for
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finding the optimal size-dependent composition. Addition-
ally, we test the performance of two forward closure ap-
proaches: a commonly used approach, which utilizes the bulk
aerosol chemical composition (i.e., size-independent compo-
sition) observations (“bottom-up” approach) to estimate the
k and predict CCN concentrations, and a simpler approach
using a constant hygroscopicity parameter « of 0.18 through-
out the study period, as recommended by Sihto et al. (2011).
Specifically, our study aims to address the following ques-
tions:

1. How does the chosen representation of k affect the CCN
closure on a multi-year and seasonal basis?

2. To what degree can a forward CCN closure be achieved
when assuming size-independent chemical composi-
tion?

3. Can we improve CCN closure by assuming mode-
dependent composition while keeping the size distribu-
tion fixed to the observations?

4. Which modal chemical composition and associated hy-
groscopicity parameter (k) provide a more accurate clo-
sure compared to using bulk chemical composition?
Furthermore, how do the inferred modal chemical com-
position and « values differ when the variability of the
aerosol size distribution during the CCN cycle period is
accounted for versus when it is neglected?

Through assuming that the SMEAR 1I station represents a
remote continental site with a reasonable accuracy, we aim to
provide useful insights on the role and dependencies of CCN
loadings on natural aerosol properties.

2 Methods and data

Figure 1 provides an overview of the data and the overall
approach used in this study. The core long-term data sets
utilized were simultaneous observations of aerosol number
size distribution between 3 and 1000 nm, chemical composi-
tion of the sub-micron (bulk) aerosol fraction and Nccn at
SS between 0.1 % and 1 % during the period of 2016-2020.
k-Kohler theory (Petters and Kreidenweis, 2007) was used
to predict Nccen based on the size distribution and composi-
tion data with three different approaches for estimating the
hygroscopicity parameter «: (1) kpyik, i.. calculating « us-
ing the observed bulk (size-independent) sub-micron aerosol
composition; (2) k.18, i.e. using a constant « value of 0.18
(Sihto et al., 2011) for the entire observation period; and (3)
Kopt and kpcmc 1.e. determining « through an inverse closure
assuming variable Aitken and accumulation mode composi-
tions while maintaining the total sub-micron chemical com-
position as observed. In the following subsections we present
further details on the measurement site and observations of
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aerosol number size distribution, sub-micron chemical com-
position, as well as concentrations of CCN at different super-
saturations. Finally, a detailed description of methods includ-
ing x-Kohler theory and inverse closure is provided.

2.1 Experimental data

2.1.1 Station for Measuring Ecosystem—Atmosphere
Relations (SMEAR I1)

The SMEAR II measurement site at Hyytidld is located at
61°51'N, 24°17'E, 181 m above sea level, and represents
a boreal forest environment with some anthropogenic influ-
ence, particularly from the southern direction where many
industrialized areas within Finland, Russia, and continental
Europe are located (Patokoski et al., 2015; Riuttanen et al.,
2013; Yttri et al., 2011; Tunved et al., 2006). The extent of
the representativeness of SMEAR II for boreal forest envi-
ronments varies seasonally and with air mass origin. The sta-
tion is surrounded by mixed forest which covers 80 % of the
land within a 5km radius and 65 % within a 50 km radius
(Williams et al., 2011). Primary local emission sources in-
clude a sawmill situated to the northeast and a pellet factory
located around 6—7 km southeast of SMEAR 1II. Overall, the
station can be considered a rural background site because the
nearest major city, Tampere, is located about 60 km south-
east of the measurement location. During the summer, lo-
cal BVOC emissions (Hakola et al., 2012; Feijé Barreira et
al., 2018), primarily those of monoterpenes, act as a major
source of SOA at the station (Heikkinen et al., 2020; Heikki-
nen et al., 2021). New particle formation (NPF), which is
an important process contributing to Nccn globally (e.g.,
Merikanto et al., 2009), is commonly observed at SMEAR
II, especially in spring and fall (Nieminen et al., 2014). Sul-
furic acid, bases and low-volatility BVOC oxidation prod-
ucts (e.g., Kulmala et al., 2014; Lehtipalo et al., 2018; Yan
et al., 2018), have been identified as critical precursors for
NPF at the site. During the winter, aerosol particles observed
at the site are mainly from long-range transport (Riuttanen
et al., 2013) and are frequently cloud-processed (Isokdintd
et al., 2022). During this season, aerosol particles contain a
larger inorganic component (about 36 % as compared to 23 %
in summer, Heikkinen et al., 2020) increasing their hygro-
scopicity. However, during the winters, the increased contri-
bution of black carbon (about 15 % as compared to 6 % in
summer, Luoma et al., 2021), a hydrophobic aerosol com-
ponent, decreases the overall hygroscopicity of the particles.
SMEAR 1I is unique due to the comprehensive set of long-
term measurements, crucial for answering questions related
to aerosol-cloud interactions, which have been conducted for
several years (Kulmala, 2018). Although facilities for mea-
suring aerosol size distribution and CCN have existed for
a long time (since 1996 and 1998, respectively), long-term
composition measurements have become available more re-
cently (Luoma et al., 2021; Heikkinen et al., 2020). This
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advancement has been due to the development and deploy-
ment of the ACSM and an aethalometer setup which provide
near-real time data on the organics, sulfate, nitrate, ammo-
nium, chloride and equivalent black carbon (eBC) in sub-
micrometre aerosol particles (see also Sect. 2.1.4).

2.1.2 Aerosol number size distribution

At SMEAR I, a Differential mobility Particle Sizer (DMPS)
has been used for particle number size distribution (PNSD)
measurements in a size range from 3 to 1000 nm since 1996
(Aalto et al., 2001). The DMPS data has the time resolution
of 10 min. The data used in this study were accessed from
SmartSMEAR database (https://smear.avaa.csc.fi/download,
last access: 28 April 2022) for years 20162020 (see Fig. 2a).
Medians of the size distribution data were taken over the start
and end time periods of the respective co-located CCN mea-
surements (see Sect. 2.1.3).

The twin-DMPS system consists of two Vienna-type Dif-
ferential Mobility Analyzers (DMAs), each designed to clas-
sify aerosol particles into size bins across two distinct size
ranges: 3—40 and 20-1000 nm. The sizing is based on the
electrical mobility of the sampled and charged aerosol par-
ticles. Air is sampled at a height of 8 m above ground level
with a common aerosol inlet. The common inlet line has a di-
ameter of 100 mm and a flow velocity of 0.5 ms~!. The sam-
ple flow for the instruments is taken from the centreline. The
aerosol flow rates in the DMAs are 4 and 1 L min™!, respec-
tively. The sheath flows, with flow rates of 20 and SL min~!,
are dried to maintain RH of less than 40 %, while the aerosol

https://doi.org/10.5194/acp-25-17275-2025

flows are not dried. The particle concentration following
each DMA is measured using Condensation Particle Coun-
ters (CPCs). For small particles (3—40 nm), a TSI 3025 CPC
model was utilized (later changed to model TSI3776 after
October 2016), while a TSI 3750 CPC is used for the detec-
tion of the larger particles in the size range 20—1000 nm.

As a first step toward the inverse closure (see also
Sect. 2.2.3), we applied a Python implementation (Khadir,
2023) of the modal-fitting algorithm described by Hussein et
al. (2005) to decompose the measured aerosol size distribu-
tions into two modes. The algorithm takes size distribution as
input and returns the lognormal parameters (number concen-
tration, geometric standard deviation, geometric mean diam-
eter GMD) of different modes as output. While the algorithm
would allow fitting up to four modes, bimodal fits (Aitken
and accumulation mode, respectively; Supplement Fig. Sla)
were selected to avoid overfitting (see also Liwendahl, 2021).
The bimodal fits enabled us to reproduce the aerosol size dis-
tributions with a high correlation (Pearson correlation coef-
ficient R =0.99) between the observed total particle number
concentration and that calculated from the fitted parameters
(Fig. S1b).

2.1.3 CCN concentrations

The time series of observed Nccn were obtained using a
CCN-100, a continuous-flow streamwise thermal-gradient
CCN counter (CCNc), commercially provided by Droplet
Measurement Technologies (Roberts and Nenes, 2005). The
CCNc can be used in either monodisperse or polydis-

Atmos. Chem. Phys., 25, 17275-17300, 2025
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perse mode, where the former is utilized to determine size-
segregated Nccn, as detailed in Paramonov et al. (2013). In
contrast, the polydisperse mode, employed here, measures
the overall Nccn at a given supersaturation.

The CCNc consists of a saturator unit and an Optical Par-
ticle Counter (OPC). The saturator is a vertically oriented
flow tube, into which aerosol-laden sample air is introduced
surrounded by a particle-free sheath air flow (1/10 flow ra-
tio) under laminar flow conditions, forming a well-defined
central flow path. The inner walls of the tube are wetted and
subjected to a controlled temperature gradient. The sheath air
flow is saturated with water vapor at the inlet temperature.
A positive temperature gradient is maintained at the satura-
tor column, inducing a quasi-constant supersaturation pro-
file for a specific temperature difference. As the laminar flow
progresses through the column, water vapor and heat diffuse
from the moist walls toward the center. The effective super-
saturation is influenced by factors such as flow rate, pressure,
and temperature gradient. While moving through the tube,
aerosol particles absorb water and grow and those particles
with critical supersaturations lower than the centerline su-
persaturation are activated as cloud droplets. Droplets larger
than 0.75 um in diameter are detected by the OPC at the exit
of the tube and those exceeding 1 um are considered to be
activated CCN. To measure at different supersaturations, the
temperature gradient is increased in steps while the flow rate
is held constant. Both polydisperse and monodisperse CCN
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concentrations were measured at each supersaturation set-
point (1.0 %, 0.5 %, 0.3 %, 0.2 %, 0.1 %). At each setpoint,
the cycle includes 300s polydisperse and 600s monodis-
perse measurements, with additional stabilisation time after
changing supersaturation, yielding a time resolution of about
2 h for this data set. Quantification and discussion of typical
uncertainties related to the supersaturation and hence Nccn
measured with this instrument are presented in e.g., Rose et
al. (2008) and Topping et al. (2005). At SMEAR I, the air
to the CCNc is sampled 8 meters above the ground level and
features the same inlet as the DMPS (see Sect. 2.1.3.). The
aerosol flow rate is 0.5Lmin~!, which is split into sheath
flow of 0.45 L min~! and sample flow of 0.045 L min~!. For
quality assurance of the CCNc data, the CCNc calibration is
conducted approximately twice a year using nebulised, dried,
charge-equilibrated and size-segregated ammonium sulfate
aerosol following procedure as per Rose et al. (2008).

Estimates of smallest activation dry diameter (Dyc() were
derived using the combination of the DMPS and the CCNc
data by integrating the PNSDs from their maximum diame-
ters to the diameter at which the integrated particle number
was equal to the measured Ncen. Dact Was then calculated
by interpolating between the two adjacent size bins (Furu-
tani et al., 2008). Essentially, variations in activation diame-
ter reflect differences in the chemical composition of aerosol
particles: the more hygroscopic the aerosol, the smaller the
activation diameter.
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2.1.4 Aerosol chemical composition

An Aerosol Chemical Speciation Monitor (ACSM; Ng et al.,
2011) was used at SMEAR II to measure the mass con-
centrations of non-refractory submicron particulate matter
(NR-PM)). The ACSM quantifies ions originating from non-
refractory organic and inorganic species and reports them
as mass concentrations of sulfate, nitrate, ammonium, and
chloride ions, along with total organic aerosol mass. Briefly,
the ACSM samples dried ambient air through a critical ori-
fice (100 um in diameter) with a flow rate of 1.4 em3s~!
to an aerodynamic lens (Liu et al., 1995a, b), which fo-
cuses a submicron particle beam and directs it to the in-
strument vaporization and ionization chamber. The lens ef-
ficiently transmits particles with vacuum aerodynamic diam-
eters (Dy,) ranging from approximately 75 to 650 nm, yet it
also passes through particles up to 1 um in D, with a less
efficient transmission. These aerosol particles then undergo
flash vaporization at 600 °C and are subsequently ionized us-
ing electron impact ionization (70 eV) and the mass spectrum
is obtained with quadrupole mass spectrometry. While the
vacuum system of the ACSM efficiently reduces the amount
of air molecules entering the instrument detection unit, their
distinction from the aerosol components is required. For this
purpose, the ACSM contains a 3-way valve system to rou-
tinely measure the signals obtained from particle-free air, and
this background is subtracted from the particle-laden sam-
ple. The detailed description of the ACSM measurements
performed at SMEAR II since 2012 is provided in Heikki-
nen et al. (2020), which includes descriptions of the instru-
ment ionization efficiency calibrations, collection efficiency
corrections and data processing. The ACSM measurements
were conducted < 100 m away from the DMPS, CCNc and
aethalometer measurements in a separate container. A PM» 5
cyclone was installed on the container roof, and the ~3m
long inlet line had an additional make-up flow of 3L m~!.
The air was dried to <30 % RH with a Nafion dryer. The
original time resolution of the ACSM data is ~ 30 min.

We combined the ACSM measurements with measure-
ments of eBC. The eBC concentration was determined based
on PM light absorption measured by an aethalometer (Magee
Scientific, models AE31 and AE33). For the period in ques-
tion here (2016-2020), the instrument was changed in the
middle as the old instrument broke down. AE31 operated
until the end of 2017 and AE33 started measuring in the
beginning of 2018. An aethalometer is a filter-based instru-
ment and it measures aerosol light absorption at seven wave-
lengths (370, 470, 520, 590, 660, 880, and 950nm). The
aethalometer data were corrected for measurement artefacts
caused by collecting the particles in a filter medium, the so-
called loading effect and scattering caused by the filter ma-
terial: AE33 applied the inbuilt dual-spot correction (Dri-
novec et al., 2015) with multiple scattering correction fac-
tor 1.39 whereas the AE31 data were corrected as suggested
by Virkkula et al., 2007 with multiple scattering correction
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factor 3.14 (derived by Luoma et al., 2021, for SMEAR
II data). The eBC concentration was derived from the ab-
sorption at 880 nm channel by using mass absorption cross-
section of 7.77 gm~2 for AE33 data (the default value sug-
gested by the manufacturer) and 4.8 gm~2 for AE31 data
(derived from 6.6 gm~2 at 637 nm used for multi-angle ab-
sorption photometer, which was used as a reference in Luoma
et al., 2021). The head of the sampling line was located 4 m
above the ground. The concentration of eBC was measured
for PMjo. Sample air was dried with a Nafion dryer and data
was marked as invalid if the relative humidity inside the in-
strument increased above 40 %. The aethalometer data was
converted to STP conditions (273.15 K, 1013.25 hPa).

The published ACSM and eBC measurements data are av-
eraged over 1 h intervals, but to align with the CCN measure-
ments, the data set was further converted to the 2 h time grid
by taking a median of the mass concentrations of each of the
measured species over the time window of each CCN spec-
trum measurement. The time series (7 d running median) are
shown in Fig. 2c. The data coverage is higher for the eBC
data compared to the ACSM data, which has fewer observa-
tions during wintertime.

2.1.5 Data coverage and seasonal classification

Figure 2 presents the overall data coverage along with the
key aerosol properties observed (see Fig. S2 for the number
of data points across different seasons). As mentioned earlier,
SOA formation and NPF events lead to higher particle num-
ber concentrations during spring and summer. This is also
reflected in the variability of CCN, particularly at higher su-
persaturations (see Fig. 2b), while lower seasonal variation is
observed at lower supersaturations (SS = 0.1 %), where only
larger particles (> 200 nm, see Fig. S3 and Table S1 in the
Supplement) are activated. This suggests that most changes
in aerosol particle number and chemical composition oc-
cur among smaller particles (Aitken and nucleation modes)
between the winter and growing seasons (spring and sum-
mer). In terms of chemical composition, organics dominate
the aerosol mass (see Fig. 2c), especially during the grow-
ing seasons, followed by sulfate and ammonium ions, with
nitrate and black carbon contributing only minor fractions.
However, given the significant seasonal variation in overall
aerosol properties at the site, we present the results according
to a seasonal classification. In this framework, March, April,
and May represent spring; June, July, and August represent
summer; September, October, and November correspond to
autumn; and December, January, and February correspond to
winter.

Atmos. Chem. Phys., 25, 17275-17300, 2025



17282

2.2 Calculations for the forward and inverse closure
studies

2.2.1 k-Kbhler theory

The classical Kohler theory (Kohler, 1936) utilizes informa-
tion about the composition and size of aerosol particles. It
estimates the critical supersaturation level SS.; and wet par-
ticle diameter at which an aerosol particle becomes activated
and grows through condensation to form a cloud droplet. The
Kohler equation comprises two terms (see Eq. 1): one ac-
counting for the influence of solutes (the soluble fraction of
aerosol particles), which tends to reduce the equilibrium sat-
uration ratio S (defined as 1+ SS), and the other known as
the Kelvin term, which represents the increased surface ten-
sion over a spherical surface. In an aqueous solution, if P
(Pa) is the partial vapor pressure of water and Ps (Pa) sat-
uration vapor pressure of water over a pure flat liquid, the
equilibrium saturation ratio S = P/ P; is represented as

4My,
) (D

S=awexplop———
w P( pRTDp,wet

where a,, is the activity of water in the solution, p is the den-
sity of the solution (kg m~3), My, is the molar mass of water
(0.018kg mol~1), o (Nm™") is the surface tension of the so-
lution, R is the universal gas constant (8.314 J mol 'K, T
is temperature (K), and Dy, wet is the diameter of the droplet
(m). To facilitate the comparison to previous work, we use
the modified version of Kohler theory (Eq. 1) described by
Petters and Kreidenweis (2007) to calculate the activation
dry diameter (related to the total amount of soluble mass)
for a particular supersaturation SS (i.e., S — 1, referred to as
the «-Kohler framework

D} e — D] 4M
p,wet ,di
S DD (-0 P (”"#) @)
Dp,wet — Df),dry (1—-x) p,wet

where Dp ary is the dry diameter of the dry aerosol particle
with a given composition described by a unitless hygroscop-
icity parameter «. In our calculations, we have assumed that
the density and surface tension of the solution are equivalent
to those of water (1000kgm™> and 0.0728 Nm~! respec-
tively). Additionally, we have considered a constant ambient
temperature (7') of 298.48 K for all seasons, corresponding
to the median temperature inside the measurement hut.
Assuming internally mixed aerosol particles, the net hy-
groscopicity parameter « for a mixture of n different chem-
ical species is expressed as the linear combination of the in-
dividual species «; weighted by their respective volume frac-
tions &; in the dry particle (Stokes and Robinson, 1966):

K = ZS,’K,’. (3)

The volume fractions &; of the individual components
were calculated from the measured mass concentrations, m;,
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and their respective densities, pj

m;
!
£ = g 4
pi

Assuming an internally mixed aerosol population is a key
assumption made in this study. According to Paramonov
et al. (2015), the aerosol in Hyytidld indeed shows some
seasonal and size-dependent mixing state characteristics.
Specifically, they report that particles in the ~75-300 nm
range are internally mixed during late spring and early sum-
mer (May—July), with a very small CCN-inactive fraction
(~ 0.2 %). For the rest of the year, the aerosol becomes par-
tially externally mixed, with the CCN-inactive fraction in-
creasing to ~ 6.6 %. However, within each size range — ei-
ther below or above 100nm — the « distributions are rela-
tively consistent, suggesting that particles are mostly inter-
nally mixed within those size classes.

2.2.2 Forward closure

In the forward closure, Nccn at supersaturations of 0.1 %,
0.2%, 0.3%, 0.5%, and 1.0% (corresponding to the su-
persaturations set in the CCNc, henceforth referred to as
SScene) are predicted using observations of the aerosol num-
ber size distribution from the DMPS. As discussed above,
two different assumptions about the hygroscopicity of the
aerosol mixture were tested: (1) assuming constant hygro-
scopicity of 0.18 (kp.1g) (2) assuming mixture hygroscopic-
ity (Eq. 4) using chemical composition information from the
ACSM and aethalometer measurements (kKpylk). Kbulk there-
fore, does not depend on particle size, but is variable in time.
For deriving kpyx the observed aerosol chemical composition
was utilized, assuming that all sulfates are present as ammo-
nium sulfate (NH4)2SO4 (AS) and the observed nitrate was
distributed between ammonium nitrate NH4NO3 (AN) and
organic nitrate (ON), estimated using the method explained
in Farmer et al. (2010) (see Supplement Sect. S1 and Fig. S4).
For the calculation of the AS and AN mass concentration,
only the measured sulfate and nitrate mass concentrations
were used. The ammonium mass concentration required for
yielding ion balance within the particles was calculated (see
Fig. S5; Zhang et al., 2007). We acknowledge that the as-
sumption that sulfate is present solely as AS can cause un-
derestimations of aerosol hygroscopicity at SMEAR II (e.g.,
Riva et al., 2019). Finally, to retrieve the volume fractions
of organics, AS, AN, ON and eBC from their estimated mass
concentrations, the density information for each species is re-
quired. The chosen densities are shown in Table 1 along with
the «; for each species.

The critical supersaturation SS;i; was then calculated for
each of the size bins measured by the DMPS using «-Kohler
theory, assuming a uniform composition throughout the size
distribution. Particles for which the calculated SS.;: was
lower than the individual SScene were then considered as
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Table 1. Densities (p; ) and hygroscopicity parameters (k; ) of the assumed dry particle constituents based on the composition estimated from

the ACSM and the aethalometer measurements.

Species o (kg m~3) K

Organics 1500 (Kostenidou et al., 2007)2  0.12 (Pohlker et al., 2023)
Ammonium nitrate (AN) 1720 0.67 (Petters and Kreidenweis, 2007)
Ammonium sulfate (AS) 1769 0.61 (Petters and Kreidenweis, 2007)
Organic nitrate (ON) 1500 0.12°

Equivalent black carbon (eBC)

1770 (Park et al., 2004)

0 (Weingartner et al., 1997)

8 SOA density estimated to be in the 1400-1650 kg m~3 range when formed from BVOCs known to produce the majority of SOA at
SMEAR 1II. 1500 kg m™3 is chosen from this range. b Set to equal that of the rest of the organics for simplicity. Some studies suggest that the
density could be slightly lower (1160-1210kg m~3, Claflin and Ziemann, 2018).

CCN corresponding to the respective SScene value. Linear
interpolation was applied to estimate the exact activation di-
ameter within a given size bin (see Lowe et al., 2016). The
CCN spectra estimated by the forward closure were then
compared to the observations made by the CCNc for the two
different hygroscopicity assumptions i.e. kpylx and kg 13-

2.2.3 Inverse closure

In the inverse closure, our objective was to minimize the dif-
ferences (e.g. through Normalized Root Mean Squared Error,
NRMSE, see Sect. 2.2.4) between predicted and observed
Nccen, while optimizing the size-dependent chemical com-
position and hygroscopicity parameter. More specifically, we
assumed the size distribution to consist of internally mixed
and log-normally spaced Aitken and accumulation modes.

The inverse closure and thus the optimization was per-
formed implementing two different methods, namely the
Nelder-Mead and the DREAM-MCMC (DiffeRential Evo-
lution Adaptive Metropolis Markov Chain Monte Carlo)
algorithms (see the descriptions of the Nelder—-Mead and
DREAM-MCMC algorithms). In both optimization methods,
all AN and AS masses were combined and treated as inor-
ganic mass for simplicity. The net p and « of the inorganic
fraction were derived using the corresponding observed mass
fraction. While the « for AN is slightly higher than that of AS
(Table 1) and the density of AN is slightly lower of that of
AS (Table 1), we consider this as a reasonable simplification
given the low AN concentration at the site. Again, all ON is
assumed to have the same « and p as the organics (Table 1).
Another key simplification is that eBC is assumed to have the
same mass fraction in both modes.

The optimization procedures based on Nelder—Mead and
DREAM-MCMC are illustrated in Fig. 3. In both ap-
proaches, the derivation of modal optimized hygroscopic-
ity parameters (ko and 3se*™ 450" from Nelder-Mead
method and Kﬁi(‘jli‘}[‘(‘j, Kﬁ,fé‘l‘\ﬁlncula‘i"“ from DREAM-MCMC, re-
ferred to as «ope and kmcemc for simplicity) begin with ob-
taining a bimodal fit of the aerosol number size distribution
into Aitken and accumulation modes (see Sect. 2.1.2). Next,
the fitted lognormal size distribution was binned onto the
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same diameter axes as the observational data, and the num-
ber of particles in each bin was scaled to match the particle
number in measured size distribution (see a demonstration
in Fig. S6 and Sect. S2). This way, the number contribu-
tions of the Aitken and accumulation modes to the observed
aerosol size distribution could be estimated for each time
point. Second, the masses of the Aitken and accumulation
modes were estimated by approximating the density of both
modes by the bulk density. The total masses of organics, inor-
ganics and eBC to be distributed to the measured size distri-
bution were then calculated using the mass fractions derived
from the ACSM and aethalometer measurement. Finally, the
Aitken vs. accumulation mode compositions, and hence kopt
or kmcMc, were determined through optimization (see also
Sect. S3 for details).

Nelder-Mead

The Nelder—Mead simplex algorithm (Gao and Han, 2012) is
suitable for both one-dimensional and multidimensional op-
timization problems and is relatively fast in our application.
In our case, we need to optimize only one variable (the frac-
tion of total organic mass in Aitken mode, mqrg Ait) and the
remaining masses can be derived from it through mass clo-
sure constraints — assuming PNSD to stay constant through-
out each CCN measurement cycle. For each time step, the
optimization begins with an initial simplex of three trial val-
ues of morg Ajt, and the NRMSE is evaluated at each point.
The worst-performing value is reflected across the midpoint
of the better two to explore whether a more accurate estimate
can be found in the opposite direction. If this improves the
fit, the algorithm attempts an expansion, pushing further in
the same direction. If reflection does not improve the result,
a contraction step is taken to move closer to the midpoint.
If neither reflection nor contraction improves the outcome,
the simplex undergoes shrinkage, tightening around the best-
performing solution to focus the search locally. This process
continues until the optimization converges, resulting in an es-
timate of morg Aj¢ that minimizes the NRMSE between mod-
eled and observed CCN concentrations. Note that Nelder—
Mead works well for simple, low-dimensional problems like
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Observational data (2016-2020)
a) CCN concentration at five supersaturation levels (0.1%, 0.2%, 0.3%, 0.5%, 1.0%)
b) Number size distribution for 52 size bins
¢) Composition: Mass concentration of Organics, Nitrate, Sulphate and Black carbon

Base case assumptions:
1. T=283 K| 2. Surface tension = 0.0728 N/m | 3. Density of solution = 1000 kg/m?
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Figure 3. Workflow of the two inverse closure methods: the Nelder—Mead algorithm (left) and the DREAM-MCMC (right) approach.
Bimodal fitting: representation of the aerosol size distribution as two lognormal modes. Harmonized size distribution: size distribution data
harmonized to CCN data; data thus obtained has 2h resolution. Unharmonized size distribution: raw size distribution data with 10 min
resolution. Scaling: adjustment of number concentrations of reconstructed lognormal size distribution from bimodal parameters to match
observations. Mass-constraint: conservation of total aerosol mass (sum of mass in two modes) of each species during optimization. NRMSE:
normalized root mean square error, a metric of model-observation agreement. MAD: median absolute deviation, used to quantify variability
in size distributions during CCN spectrum cycle period. Prior distribution: initial parameter ranges provided to the MCMC sampler. Log-
likelihood: statistical measure of consistency between observed and modeled CCN spectra.

optimizing just one parameter (€.g., Mg, Ait), but it starts to
struggle as the number of variables increases and have a ten-
dency for converging to local minima.

DREAM-MCMC

In order to assess the importance of the variability of the
bimodal size distribution parameters within each CCN cy-
cle, we conducted a second inverse-closure experiment with
the number concentration and mean diameter for both modes
as additional optimization parameters (simultaneously with
Morg, Ait)- Since optimizing both size distribution parame-
ters and composition introduces a more complex and higher-
dimensional parameter space, and we are interested param-
eter uncertainty, we use a Bayesian inference approach to
estimate the parameter posterior distributions. Specifically,
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we chose the DiffeRential Evolution Adaptive Metropolis
Markov Chain Monte Carlo (DREAM-MCMC) algorithm
(Vrugt et al., 2009), which has been previously used for in-
verse CCN-closure studies in idealized cases (Partridge et al.,
2012) and is available in the Python PINTS library (Clerx et
al., 2019). DREAM-MCMC is an efficient MCMC method
(Metropolis et al., 1953; Gelfand and Smith, 1990) that eval-
uates multiple Markov chains in parallel and automatically
adapts its proposal strategy during sampling, making it par-
ticularly efficient for correlated, multi-modal problems such
as aerosol-cloud microphysical interactions. To know more
about MCMC and Bayesian inference, see Sect. S4.

We initialized the MCMC optimization with Cauchy pri-
ors for each parameter (see Sect. 5), centered on the median
values of the fitted bimodal size distributions for each CCN
cycle, specifically, the number concentration and GMD. For
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chemical composition we used the median of the ACSM ob-
servations during each CCN spectrum cycle. The scale value
was the smaller of either 1 (resulting in a Student-# distribu-
tion) or the median absolute deviation (MAD) of the observa-
tions within the given CCN cycle. The priors were truncated
to positive values only. We also constrained the total aerosol
mass in each mode to remain within £10 % of the total mass
observed by the ACSM and aethalometer.

We used a heteroskedastic Gaussian likelihood function,
which means that the highest likelihood is typically where
the parameters provide the least squares fit to the CCN ob-
servations, analogous to minimizing the NRMSE described
above. The likelihood is defined as

n

L@Y)= ]‘[L
i=1/2ms?

where s; is standard deviation of the measurement error,
which we assume is 10 % of the CCN observations at each
supersaturation value y; and ¢; is the model predictions of
CCN spectra at each super-saturation given the calibration
parameters 6 (the log-normal parameters and mass fraction).
We performed the optimization in a log-transformed param-
eter space, which improves sampler efficiency by normal-
izing scale differences between parameters. For each CCN
observation window, we ran five chains with 40000 itera-
tions per chain, of which the first 15000 were used as burn-
in/adaptation. Up to two chains were discarded if they devi-
ated strongly in central tendency after burn-in, and the last
20000 steps of all accepted chains were then used to cal-
culate posterior statistics. Convergence was assessed with
the R-statistic (Gelman and Rubin, 1992), using a relaxed
threshold of R < 2.5 for all five parameters to retain a win-
dow in the analysis. The R-statistic compares the variance
within chains to the variance between chains; values close
to 1 indicating well-mixed, converged chains. We used a re-
laxed threshold because the R-statistic is quite conservative
and because our problem has high correlation between pa-
rameters and the potential for multi-modality if there are
multiple distinction aerosol populations within one window,
which is penalized by the R-statistic but realistic in this case.
Overall, 19 % of windows were discarded due to high R-
statistic values. Even with the relaxed threshold, some win-
dows were excluded where the MCMC identified reasonable
parameter values and CCN spectra but the chains failed to
mix well. Examples of the chain evolution and posterior pa-
rameter distributions are discussed in Sect. S5.

1
exp [—Es,-‘z(yi — i (9»2} )

2.2.4 Metrics for assessing variability of lognormal size
distribution parameters during CCN cycle

Unlike the Nelder—-Mead optimization method, which uses
the median of the size distribution during the CCN cycle pe-
riod, the DREAM-MCMC setup requires the variability of
the size distribution as input. To account for this, we calcu-
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late the median absolute deviation (MAD) of each lognor-
mal parameter for every CCN cycle observation. The overall
distribution of MAD values for the full 5-year dataset is pre-
sented in Sect. S6 and Fig. S10. MAD for individual CCN
cycle period is calculated as follows:

Let I, =[£54", ") be the time window for CCN cy-
cle c; For a given lognormal parameter, k(among geometric
mean diameter (GMD), geometric standard deviation (SD)
and number concentration in each mode; so total 6 param-
eters), collect the samples inside this window as {x;(¢) : t €
I} = {xk,1, Xk 2, o o) Xk, )

Median in the interval is m(c):

median{xg 1, Xk.2, ..., Xk,n.} (6)
MAD in interval c:
median|xy ; —mg(c)|, where i varies from 1 to n, @)

2.2.5 Metrics for assessing the goodness of closure

The Normalized Root Mean Square Error (NRMSE) between
observed and predicted CCN concentrations was calculated
as (see also Sect. S7 and Fig. S11):

n
2
\/% 2:1 (CCNpred,i - CCNobs,i)
i=

NRMSE = —
CCNobs

®)

where CCNyyeq,; is the predicted CCN concentration at su-
persaturation i, CCNgps ; is the observed CCN concentra-
tion at supersaturation 7, n is the number of data points (in
this case five, as we have five different supersaturations) and
CCNyps is the mean of the observed CCN concentrations
across all supersaturations.

To facilitate direct comparison with Schmale et al. (2018)
we also calculated the Geometric Mean Bias (GMB) for each
time point, defined as:

1 n CCNpred,i
e (S

3 Results and discussion

3.1 Size distributions and activation diameters

Figure 4 presents the median and quartiles of lognormal
aerosol number size distributions and median activation
diameters (D,¢) calculated from the PNSD-CCN closure
across different seasons. In PNSD-CCN closure, D, at a
given SS was derived by integrating the PNSD from the
largest to the smallest diameters until the integrated num-
ber equalled the measured CCN concentration at that SS; the
corresponding diameter was then identified as D, (see e.g.
Sihto et al., 2011 and Sect. S8). The shape of a lognormal
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size distribution depends on the age of the aerosol popula-
tion, and the atmospheric processing (e.g. nucleation, coagu-
lation, condensation, deposition and chemical reactions) that
has taken place along the transport trajectory to the measure-
ment site. As discussed previously, NPF (Nieminen et al.,
2014) and biogenic SOA formation (Heikkinen et al., 2020)
result in almost bell-shaped size distributions with high par-
ticle number concentrations in spring and summer. In au-
tumn and winter, on the other hand, biogenic aerosol pre-
cursor emissions are reduced leading to a lowering in the
organic aerosol mass fraction. The contribution from long-
range transported, cloud-processed and aged particles in-
creases, detected in the form of bimodal aerosol size dis-
tributions with predominant Hoppel minima (Hoppel et al.,
1986) at around 80-90 nm in diameter, and increased inor-
ganic aerosol mass fractions. The activation diameters de-
crease with increasing supersaturation and the median D¢
(see Table S1) is generally higher for all seasons than re-
ported in earlier studies using similar methodology (e.g., Si-
hto et al., 2011; Paramonov et al., 2015). For instance, Para-
monov et al. (2015) reported a median D, of 46 nm at 1.0 %,
whereas we find values of 54-57 nm. Similarly, at 0.1 % su-
persaturation, they reported 150 nm, which is lower than our
results of 206-224 nm, depending on the season. This could
reflect decreasing abundance of sulfate during the last two
decades as compared with less hygroscopic organic species
(Fig. S12; see also Aas et al., 2019; Li et al., 2024). The acti-
vation diameters are relatively similar across the seasons (see
Table S1), therefore suggesting a similar composition of the
CCN over the year in comparison with the variability in the
number size distribution. The slope of the PNSD function
is typically steep over the ranges of D, corresponding to
the investigated supersaturations. This indicates a high sen-
sitivity of CCN to any parameters driving the PNSDs (see
e.g., Lowe et al., 2016). While the median activation diame-
ters show almost no seasonality, looking in more detail (see
Fig. S3), an increase in the D, is observed during the tran-
sition from winter to spring. This is probably due to the addi-
tion of more organic aerosol, which is less hygroscopic than
the common inorganic salts. Dy reaches its maximum in
summer and decreases again towards autumn. After autumn,
there is an increase in D, toward winter, despite a decrease
in BVOC emissions and the resulting lower organic mass
fraction alongside a higher inorganic fraction (see Fig. S13).
This suggests the influence of another factor, possibly the
higher eBC fraction observed during winter (see Sect. 3.3).
While the seasonal variation in median activation diam-
eters D, is not pronounced across all SS, more detailed
inspection (Fig. S3) reveals a decrease in D, at the low-
est supersaturation (0.1 %) during the transition from au-
tumn into winter (November to April). This trend is con-
sistent with a reduced contribution of organic aerosols and
a higher relative abundance of inorganic components during
winter (sources of which include long-range transport and
e.g. cloud-processing along the transport route), as also indi-
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cated by the bulk chemical composition (Fig. S13). Since the
activation diameters at 0.1 % SS fall within the accumulation
mode, the size range where ACSM measurements are most
representative, the observed seasonal variation in Dy at this
SS level can be directly linked to changes in aerosol com-
position. Overall, across all supersaturations, an increase in
Dy is generally observed during the transition from spring
to summer which is more pronounced at 0.1 %, 0.2 %, and
1.0 % SS, while being relatively weak at 0.5 % SS.

3.2 COCN spectra — Insights from forward and inverse
CCN closures

Figure 5 shows the comparison between the observed and
predicted CCN spectra, again displayed for each season sep-
arately. First, seasonal variations are evident, with CCN con-
centrations peaking in the summer and having their minimum
in winter — in line with the overall particle number concen-
trations (see Figs. 4 and S14). The median seasonal CCN
concentration ranges from 29-76 cm™> for 0.1 % supersat-
uration, 101-317cm =3 for 0.2 %, 143-512cm ™3 for 0.3 %,
170-744 cm~ for 0.5 %, and 300-1116 cm~? for 1.0 % with
significant variations across seasons. These values are some-
what lower than previous studies (Sihto et al., 2011; Para-
monov et al., 2015), potentially related to decreases in over-
all particle number concentrations and a more prominent
role of biogenic organic aerosols vs. inorganic sulfate (see
e.g., Li et al., 2024) — reflecting the higher activation diam-
eters reported here as compared to the previous studies. The
NRMSE values for the two forward closure methods range
from 0.42 to 0.94 (Table 2). The agreement of the forward
closure based on the bulk composition is best for supersat-
urations of 0.2 % and 0.3 % where the activation diameter
is generally within the accumulation mode range, and hence
also the ACSM composition is probably a more accurate es-
timate of the composition of the dry particles. The agree-
ment is worst for the lowest supersaturation of 0.1 %, as also
observed previously in Wang et al. (2010) and Meng et al.
(2014). Furthermore, the agreement is better during spring
and summer compared to autumn and winter (Fig. 5). Inter-
estingly, when comparing the results from the forward clo-
sures, a better closure is obtained with the simple constant
value of kg 13 than with the “bottom-up” hygroscopicity es-
timate using the ACSM and aethalometer data («pyk), indi-
cating that assuming size-independent but temporally vary-
ing composition performs worse than a much simpler as-
sumption. The results from the inverse closure (kopt) how-
ever, show that this issue can be mitigated when distribut-
ing the measured/estimated inorganic and organic species
between the Aitken and accumulation modes. Including the
size-dependent chemical composition, the variability of the
size distribution during CCN cycles and uncertainty in CCN
measurements (10 %; see e.g. Rejano et al., 2024 and refer-
ences therein) further reduces the bias, correcting most of the
overprediction (see Fig. 5, kmcmc). All methods (both the
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Figure 4. Seasonal overview of the lognormal size distribution, with solid lines representing the median and shaded regions indicating the
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data with the number size distribution measurements from the DMPS.

forward and inverse closures) tend to overpredict CCN num-
bers, with kpyk exhibiting the highest error, which is clearer
when we look at NRMSE and GMB values (Fig. 6, Table S2
and Fig. S15).

When combined across all SS the overall NRMSE values
for the entire timeseries are 0.43 for xpyk, 0.35 for «q 18, 0.28
for «qpy and 0.08 for kpmcemc. To provide a more detailed per-
spective, we also calculated the NRMSE for each SS individ-
ually. Figure 6 provides an overview of how the four differ-
ent methods perform in estimating CCN concentrations. All
methods demonstrate a strong positive correlation with the
observations (Pearson R > (0.70) and the NRSME remains
in most cases below 1.0 (Table 2 and Fig. 6). The perfor-
mance skill (i.e., the combined behavior of R and NRMSE;
see Fig. 6) varies with SS, but when averaged across all SS,
kMmcMc achieves the best agreement, followed by kopt, k0.18
and kpylk. As shown in Table 2, the largest errors gener-
ally occur at the lowest (0.1 %) and highest (1.0 %) super-
saturations. An exception is xkpvcMc, Which substantially re-
duces the bias and NRMSE across all supersaturations. The
highest error is still at 0.1 %, while the other supersatura-
tions agree closely with the observations. At 0.5 % SS, the
NRMSE for kpyx is around 0.56 and the GMB is around
1.38 (see Fig. S15 and Table S2), which is slightly higher
than the GMB (1.32) reported by Schmale et al. (2018) for a
shorter dataset and a different time period. The best perfor-
mance skill for the forward closure is obtained at SS = 0.3 %,
followed closely by SS = 0.2 % (see Table 2), where predom-
inantly accumulation mode particles activate (see Fig. 4).
Given that the typical SSpax in stratocumulus clouds in the
region are often below 1 % (Roberts et al., 2006; Hegg et al.,
2009), the performance at these levels is particularly rele-
vant. The different SS-dependence of the bias in the MCMC
inverse closure as compared with the other closure methods
suggests that the source of the bias for the lowest supersatura-
tion differs from that at higher supersaturations. For the low-
est supersaturations, the high flow rate in the CCN counter
may hinder smaller particles from growing sufficiently to be
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detected by the CPC (see also Ervens et al., 2007; Lance et
al., 2006). For the highest supersaturation, our results suggest
that the significant over-prediction of the forward-closure
and Nelder-Mead methods are indeed a result of the high
variability of the PNSD and the sensitivity of the Aitken-
mode CCN to it.

The results presented in Fig. 5 reveal a systematic overpre-
diction of Nccn. Part of this overprediction could be reme-
died by assuming a size-dependent chemical composition
with an enrichment of organics in the Aitken mode — given
the expected lower « of the organic as compared with the in-
organic aerosol components. Previous studies have observed
that the « of OA can be even lower than the assumed value
of 0.1 (see e.g., Rastak et al., 2017; Cai et al., 2018 and
references therein). An alternative way to optimize the re-
sults could therefore be through assuming a size-independent
composition but lower organic x. As a conservative evalua-
tion of this approach, we conducted a test assuming organics
to be non-hygroscopic, similar to black carbon. In Table 2
and Fig. 6 these calculations are denoted with ko = 0. The
resulting NRMSE and GMB (see also Figs. S15, S16 and
Sect. 9) suggests that organics in the accumulation mode are
likely hygroscopic, as assuming zero hygroscopicity leads to
underprediction of Nccen. Another explanation could be due
to an under-representation of larger inorganic particles in the
observations, for example in the upper tail of the accumula-
tion mode, or an undetected coarse mode component such as
sea salt which is not measured by the ACSM. Alternatively,
the finding may arise from the initial assumption of the equal
distribution of BC among Aitken and accumulation modes.
In terms of correlation, Kopt, in comparison to Korg—0, CONSis-
tently performs better overall (see Table 2), the NRMSE val-
ues also being smaller than for the entirely non-hygroscopic
organics. This suggests that, compared to the variation in the
hygroscopicity parameter of organics with size, accounting
for the size-segregated nature of chemical composition pro-
vides a more accurate explanation for the overprediction of
CCN than simply non-hygroscopic organics. The impact of
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Figure 5. Observed (dashed) and predicted (solid) median CCN spectra in different seasons. The whiskers display the 25th and 75th per-

centiles.

Table 2. NRMSEs and Pearson’s correlation coefficient (R in brackets) corresponding to different methods and supersaturations for all years

taken together.

Methods NRMSE (R) NRMSE (R) NRMSE (R) NRMSE(R) NRMSE (R)

SS=0.1% SS=02% SS=03% SS=05% SS=1.0%
Kbulk 0.94(0.78)  0.49(0.85)  0.49(0.85)  0.59(0.84)  0.60 (0.79)
K018 0.71 (0.74)  0.43(0.84) 042 (0.86)  0.50(0.85)  0.52(0.81)
Kopt 0.92(0.78)  0.46(0.86) 043 (0.87)  0.47(0.88)  0.44 (0.86)
Korg =0  0.62(0.70) 049 (0.75)  0.48(0.77)  0.46(0.80)  0.47 (0.77)
KMCMC 0.65(0.85)  0.17(0.97)  0.12(0.99) 0.082(0.99)  0.045 (0.99)

assuming constant BC fraction in both modes was also found
to be minor (see Sect. S10). Using the DREAM-MCMC op-
timization to account for the variability of the PNSD dur-
ing the CCN measurement cycle mitigates most of the over-
predictions — further strengthening the strong role of size-
dependent chemical composition as key factor for yielding a
successful CCN closure, but also highlighting the importance
of the PNSD variability.

3.3 Insights on size-dependent submicron
hygroscopicity parameter and aerosol composition

from inverse CCN closure

For the optimized CCN spectra (kopt and kmcmc), the sea-
sonal probability distributions of the corresponding hygro-
scopicity parameters for Aitken and accumulation modes are
shown in Fig. 7. Both optimization approaches produce al-
most identical « distributions for the accumulation mode
with median hygroscopicity values around 0.2-0.3. In con-
trast, the Aitken mode exhibits a distinct bimodality in both
cases. The Nelder—Mead optimization produces a sharp peak
at Kaitken ~ 0.1, whereas the DREAM-MCMC distribution
shows a lower but broader peak slightly above 0.1 — which
would be in line with the expected hygroscopicities of the
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BVOC oxidation products present at the measurement site. A
secondary peak generally appears between xajxken = 0.5 and
0.6, with kMcMmc consistently shifted toward the lower end of
this range. The exception is winter, where the second peak is
more diffuse in both methods. The lower peak in DREAM-
MCMC compared to Nelder—-Mead reflects differences in
how the two methods balance CCN overprediction. Since
kbulk Systematically overestimates CCN, the Nelder—-Mead
optimization compensates by assigning the Aitken mode a
much lower hygroscopicity (higher organic fraction). When
size-distribution parameters are also allowed to vary, as in
kmcMmc, part of this CCN overprediction can instead be ex-
plained by variability in size distribution lognormal parame-
ters. Consequently, the smaller x peak is reduced in height,
while the overall distribution remains consistent with the
Nelder—-Mead method. In general, the probability distribution
of Aitken and accumulation mode hygroscopicity parameter
from both methods indicates that the Aitken mode can be
predominantly organic on a significant number of instances,
with most values of « clustering around typical organic «
of 0.1. This significant difference in hygroscopicity between
the two modes exceeds the typical variability in hygroscop-
icity values observed for various soluble chemical compo-
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nents, suggesting indeed distinct chemical compositions and
water uptake properties of the two modes. Overall, in «qpt,
the variability between seasons is similar for both the Aitken
and accumulation mode (see Fig. S17), while in kpcMmc the
Aitken mode has a significantly higher variability in all sea-
sons. In autumn and winter, the MCMC distributions resem-
ble those from the Nelder-Mead, suggesting a clear organic
enrichment in the Aitken mode as compared with the ac-
cumulation mode. For the spring and summer however, the
distributions of Aitken mode hygroscopicities are more bi-
modal. The cases where a clear organic enrichment in the
Aitken mode is predicted are characterized by relatively high
Aitken mode particle number concentrations and large modal
diameter. These results are generally in line with previous
studies reporting differences in the hygroscopicity of Aitken
and accumulation mode-sized particles (Hameri et al., 2001;
Paramonov et al., 2015). Because the Aitken mode hygro-
scopicity distributions are bimodal, a single central metric
(e.g., the median) can under-represent the distribution. Even
so0, both approaches reveal some common seasonal patterns:
Aitken « is higher in spring and summer, and lower in au-
tumn and winter. In the darker seasons, reduced/absent NPF
events and weaker local aerosol production make the accu-
mulation mode more frequently the more hygroscopic mode,
while in spring—summer Aitken « more often approaches
or exceeds accumulation values. Accumulation-mode « re-
mains comparatively stable, typically between 0.2-0.3, with
the highest values in winter. This seasonal variability co-
incides with enhanced summertime photochemistry, which
drives new Aitken particle formation from organic vapors
and subsequent aging that increases the oxygen-to-carbon ra-
tio of organics, thereby raising their hygroscopicity (Jimenez
et al., 2009; Heikkinen et al., 2021).
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Because a bimodal distribution in ¥ was observed with
the MCMC optimization, we separated the optimized data
into two groups: cases Where K Ajtken > Kaccumulation and cases
where Kaitken < Kaccumulation- 1he mean optimized compo-
sitions for these groups are shown in Fig. 8, while the
corresponding medians are given in Tables S4-S7. In the
Nelder-Mead optimization, KAijtken > Kaccumulation OCCUTS in
23 9% of cases, compared to 54 % with the MCMC method.
Conversely, Kitken <Kaccumulation 18 found in 77 % of cases
with Nelder-Mead and 46 % with MCMC (see Table S8).
Despite these differences in frequency, the median « val-
ues shows remarkable agreement between the two ap-
proaches (see Table S8). For kaitken > Kaccumulation, the me-
dian GMD jken, GMDaccumulations KAitken> and Kaccumulation
are 30-32nm, 133-137nm, 0.5, and 0.2, respectively. In
contrast, for Kaitken < Kaccumulations they are 37-43 nm, 137-
164 nm, 0.1, and 0.27. Thus, cases with higher Aitken « are
characterized by smaller Aitken GMD and occurred through-
out the year but were much more frequent in summer. This
feature has also been reported in previous studies from vari-
ous environments, where « increased at diameters typical of
Aitken and nucleation mode (particularly below 60-70 nm)
and was often — but not always — associated with NPF events
(Lance et al., 2013; Spitieri et al., 2023; Massling et al.,
2023). For kaitken > Kaccumulation» the Aitken mass is con-
sistently lower than in the kajtken < Kaccumulation Case (see
Fig. 8), reflecting the availability with condensable vapors
with low enough volatility to overcome the Kelvin barrier
and condense on the Aitken mode. In both optimization
methods, the composition patterns within each group are
very similar, just as with the « values (Fig. 8). For cases
where Kaitken > Kaccumulation, the Nelder—Mead predicted the
Aitken mode to be almost entirely inorganic, while DREAM-
MCMC suggested slightly more organic material but still
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mostly inorganics. In these cases, both approaches agree that
the Aitken mode had the lowest organic fraction in winter
and spring. For xaitken < Kaccumulation, OUr results, consistent
with previous studies at SMEAR 1I (e.g., Allan et al., 2006),
indicate that the accumulation mode contained a larger inor-
ganic fraction, leading to higher hygroscopicity compared to
the Aitken mode. Such a difference has also been observed in
other similar environments (Timonen et al., 2008; Hao et al.,
2013; Levin et al., 2014) as well as in urban Beijing (see also
Wau et al., 2016). This disparity in mass fractions of inorgan-
ics between the two modes is most pronounced in winter (for
example in Nelder-Mead optimization, the relative enrich-
ment in Aitken vs. Accumulation model mass fraction being
~ 156 %) and autumn (the relative enrichment of ~ 106 %),
i.e. the periods when the distinction between Aitken and ac-
cumulation modes is most evident (see Fig. 4). This seasonal
variation reflects shifts in aerosol sources and processes, and
the results are generally in line with what is known. Dur-
ing summer, biogenic SOA is a major source of particulate
matter in Hyytidld (Heikkinen et al., 2021; Yli-Juuti et al.,
2021). In contrast, autumn and winter are characterized by a
higher mass fraction (and concentration) of inorganic aerosol
chemical components (Heikkinen et al., 2020), which high-
lights the prevalence of transported (Riuttanen et al. 2013)
and cloud-processed particles (Isok&dénti et al., 2022). Cloud
processing leads to both the observed bimodal PNSD (Fig. 3)
and a higher sulfate abundance in the accumulation mode
(e.g., Leaitch et al., 1996; Roelofs et al., 1998; Kreidenweis
et al., 2003; Wonaschuetz et al., 2012; Ervens et al., 2018).
In our analysis, we assumed values of organic properties
(x and density) based on past studies, as mentioned in Ta-
ble 1. However, to discard any possibility of major changes
in the results, we performed additional inverse-closure stud-
ies allowing organic properties to vary in several ways, as
discussed in Sect. S11. These sensitivity tests showed that
two of the optimization approaches led to physically unreal-
istic organic densities (~ 1000 and > 2500 kg m~3), despite
achieving similar NRMSEs. In contrast, the method keeping
the size distribution to the median values observed during
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CCN cycles produced physically reasonable porg (~ 1200
1300kg m’3) and «org (0.06-0.08), consistent across seasons
— also in the light of typical hygroscopicity values of organic
molecules such as those resulting from BVOC oxidation (e.g.
Petters and Kreidenweis, 2007; Siegel et al., 2022). This con-
firms that the assumed organic properties used in the main
analysis are robust and do not significantly bias the optimized
results.

4 Conclusions

In this study, we integrated long-term chemical composition
measurements from an Aerosol Chemical Speciation Mon-
itor (ACSM) with Cloud Condensation Nuclei (CCN) ob-
servations and aerosol number size distributions. This re-
sulted in ~ 6200 concurrent two-hour resolution data points.
We used this dataset to evaluate four methods for predicting
CCN concentrations based on «-Kohler theory across vary-
ing supersaturations, beginning with two forward closure
approaches. The first, a ’bottom-up’ method, used ACSM
and aethalometer data to estimate the bulk hygroscopicity
parameter (kpyx) for predicting CCN concentrations, while
the second approach (kg 13) assumed a constant x value of
0.18, as recommended by Sihto et al. (2011), throughout
the study period. We observed that the overall median ac-
tivation dry diameters (Dyc¢) ranged from 54 nm (SS =1 %)
to 224 nm (SS = 0.1 %) nm across different months, suggest-
ing that Aitken mode particles contribute to the CCN num-
bers at this location — besides the well-known contribution
of the accumulation mode (Pierce et al., 2012 and refer-
ences therein). Therefore, the possibility of different chem-
ical composition/hygroscopicity between Aitken and accu-
mulation modes (for e.g. Broekhuizen et al., 2006) motivated
us to use an inverse closure technique that involved an op-
timization algorithm (Nelder-Mead in the Python SciPy li-
brary and DREAM-MCMC) to determine the optimal modal
hygroscopicity (kopt and kmcmc) by obtaining a closure be-
tween observed and predicted CCN concentrations.
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CCN concentrations at Hyytidld exhibit clear seasonal
variations, peaking in summer and reaching their lowest in
winter, reflecting overall particle number trends. Our closure
calculations agree reasonably well with observed CCN con-
centrations, with Pearson correlations exceeding 0.8. How-
ever, all of the applied methods tend to overpredict CCN
concentrations to varying degrees. As expected, the inverse
closure methods perform the best, especially at higher su-
persaturations (0.3 %, 0.5 % and 1.0 %), where both accumu-
lation and Aitken mode particles can activate, highlighting
the importance of accounting for the size-dependent nature
of aerosol composition for more accurate CCN predictions.
Overall, the GMB remains well below 1.3 forkmemc, Kopt
and o 18 across all supersaturations (see Table S2), except at
0.1 %. The best agreement is observed at 0.2 % and 0.3 % su-
persaturations, where the GMB is around 1.1 for all methods,
except for kmcemc, for which the best agreement occurs at
0.5 % and 1.0 %. These results suggest that most of the over-
prediction at higher supersaturations where the Aitken mode
activates, can be reduced if variability in the lognormal pa-
rameters of the size distribution is also considered. However,
at a supersaturation of 0.1 %, the use of size-dependent com-
position i.e. kopt and kpcmc does not significantly reduce the
error. This suggests that the primary source of the error at this
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supersaturation arises from another factor — most likely, the
substantial measurement uncertainty of the CCN counter at
low supersaturation, as previously discussed (see Sect. 3.2).
Both inverse-closure methods reveal clear differences in
aerosol composition and hygroscopicity between the Aitken
and accumulation modes. The Aitken mode shows a bi-
modal distribution in «, with one peak near 0.1 and an-
other between 0.5 and 0.6, whereas that of accumulation
mode is unimodal with « values centered around 0.2-0.3.
Based on this bimodality, we divided the optimized data
into two groups: cases With Kajiken > Kaccumulation and those
with Kaijtken < Kaccumulation- 1he former occurs more often in
summer and is associated with a smaller Aitken-mode GMD
compared to the accumulation mode. The occurrence of high
k in the Aitken mode appears to be linked — though not
exclusively — to new particle formation (NPF) but limited
growth. Overall, « in the accumulation mode remains rela-
tively stable between 0.2 and 0.3, while « in the Aitken mode
varies widely from 0.1 to 0.6. This indicates that most sea-
sonal changes in aerosol hygroscopicity occur in the Aitken
mode. In all cases, summer has comparatively more organics
as biogenic secondary organic aerosols formation dominate
among all aerosol sources, whereas autumn and winter show
higher fractions of inorganic components due to transported
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and cloud-processed particles. The Aitken mode has the low-
est k values in winter, while summer features higher Aitken
mode hygroscopicity (lowest accumulation mode «) possibly
due to decreasing BC content.

In the Nelder-Mead optimization, the relative difference in
the median Aitken and accumulation « is most pronounced
in winter (~ 162 %), followed by spring (~ 134 %), autumn
(~ 116 %) and summer (~ 85 %) reflecting seasonal shifts
in aerosol sources and processes. These seasonal variations
are consistent with known atmospheric processes, providing
confidence in using CCN data to understand mode compo-
sition differences. The findings in this study are in line with
previous research highlighting distinct differences between
Aitken and accumulation mode compositions at Hyytiéla
and similar environments (Hao et al., 2013). Previous stud-
ies have also demonstrated that chemical composition and
hygroscopicity parameter are size-dependent (Lance et al.,
2013; Ray et al., 2023) and accounting for size-dependency
improves CCN predictions (Meng et al., 2014). Specifically,
our results indicate that on many occasions, the accumula-
tion mode is enriched with sulfate, while the Aitken mode
is predominantly organic, in agreement with observed size-
dependent chemical compositions using an Aerosol Mass
Spectrometer (AMS; Allan et al., 2006). This is further-
more consistent with Mohr et al. (2019), who found that
organic vapors significantly contribute to particle growth in
the Aitken mode. It is notable however that all optimized
compositions (kept and kmcmc) do not resolve all the over-
prediction of the CCN concentration, indicating an additional
structural error in the theoretical approach or experimental
uncertainties that we did not account for. If modal or size-
resolved « (in addition to just having bulk chemical com-
position) were available, our approach could be extended to
derive more detailed size-dependent chemical composition —
for example, size-dependent organic hygroscopicity — while
also helping to constrain « values by identifying those that
best reproduce observed CCN concentrations.

In the future, the method applied here should be tested
at other locations with varying aerosol chemical composi-
tions — also to mitigate the inherent representativity issues
related to using data from a single station. Furthermore, the
approach for optimizing the closure using size-resolved com-
position should be compared and contrasted with other ap-
proaches, e.g. accounting for potential structural issues with
the «-Kohler model such as the treatment of the surface ten-
sion or volatility of the particle components (see e.g. Lowe
et al., 2019; Heikkinen et al., 2024).

Code availability. The codes to perform inverse-closures and to
generate most of the figures are available at https://github.com/
rahulranjanaces/Inverse-closure.git (last access: 21 October 2025),
and https://github.com/mauradewey/Modal- Aerosol-Composition
(last access: 21 October 2025). These codes and also be accessed on
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