Articles | Volume 25, issue 22
https://doi.org/10.5194/acp-25-15953-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-15953-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical characterization and source apportionment of fine particulate matter in Kigali, Rwanda, using aerosol mass spectrometry
Theobard Habineza
Carnegie Mellon University, Department of Mechanical Engineering and Center for Atmospheric Particle Studies (CAPS), Pittsburgh, PA, USA
Allen L. Robinson
Department of Atmospheric Science, Colorado State University, Ft Collins, CO, USA
H. Langley DeWitt
CIRES, University of Colorado, Boulder, CO, USA
Jimmy Gasore
Kigali Collaborative Research Center, Kigali, Rwanda
Philip L. Croteau
Aerodyne Research, Inc., Billerica, Massachusetts, USA
Carnegie Mellon University, Department of Mechanical Engineering and Center for Atmospheric Particle Studies (CAPS), Pittsburgh, PA, USA
Kigali Collaborative Research Center, Kigali, Rwanda
Related authors
No articles found.
Dongwook Kim, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Da Yang, Suresh Dhaniyala, Leah Williams, Philip Croteau, John Jayne, Douglas Worsnop, Rainer Volkamer, and Jose L. Jimenez
Aerosol Research, 3, 371–404, https://doi.org/10.5194/ar-3-371-2025, https://doi.org/10.5194/ar-3-371-2025, 2025
Short summary
Short summary
Quantitative real-time aerosol sampling on board aircraft platforms is challenging, especially at higher altitudes. Herein, we present comprehensive analyses of a new aircraft inlet system and tools for aerosol beam diagnostics for aerosol mass spectrometers (AMSs). The beam focusing of aerodynamic lenses and the thermal decomposition on the vaporizer were investigated. The new inlet system can be operated at higher altitudes while sampling aerosols over a broader size range than previous versions.
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024, https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Short summary
In a warm cloud seeding experiment hygroscopic particles are released to alter cloud processes to induce early raindrops. During the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment, airborne mini aerosol mass spectrometers analyse the particles on which clouds form. The seeded clouds showed higher concentrations of chlorine and potassium, the oxidizing agents of flares. Small cloud droplet concentrations increased, and seeding particles were detected in deep cloud depths.
Daniel Furuta, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 17, 2103–2121, https://doi.org/10.5194/amt-17-2103-2024, https://doi.org/10.5194/amt-17-2103-2024, 2024
Short summary
Short summary
Methane is an important driver of climate change and is challenging to inexpensively sense in low atmospheric concentrations. We developed a low-cost sensor to monitor methane and tested it in indoor and outdoor settings. Our device shows promise for monitoring low levels of methane. We characterize its limitations and suggest future research directions for further development.
Sunhye Kim, Jo Machesky, Drew R. Gentner, and Albert A. Presto
Atmos. Chem. Phys., 24, 1281–1298, https://doi.org/10.5194/acp-24-1281-2024, https://doi.org/10.5194/acp-24-1281-2024, 2024
Short summary
Short summary
Cooking emissions are often an overlooked source of air pollution. We used a mobile lab to measure the characteristics of particles emitted from cooking sites in two cities. Our findings showed that cooking releases a substantial number of fine particles. While most emissions were similar, a bakery site showed distinctive chemical compositions with higher nitrogen compound levels. Thus, understanding the particle emissions from different cooking activities is crucial.
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12441–12454, https://doi.org/10.5194/acp-23-12441-2023, https://doi.org/10.5194/acp-23-12441-2023, 2023
Short summary
Short summary
We measured the gas–particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of semivolatile organic compounds. Most compounds measured are less volatile than model predictions. Wildfire aerosol enhanced the condensation of polar compounds and caused some nonpolar (e.g., polycyclic aromatic hydrocarbons) compounds to partition into the gas phase, thus affecting their lifetimes in the atmosphere and the mode of exposure.
Daniel Furuta, Tofigh Sayahi, Jinsheng Li, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 15, 5117–5128, https://doi.org/10.5194/amt-15-5117-2022, https://doi.org/10.5194/amt-15-5117-2022, 2022
Short summary
Short summary
Methane is a major greenhouse gas and contributor to climate change with various human-caused and natural sources. Currently, atmospheric methane is expensive to sense. We investigate repurposing cheap methane safety sensors for atmospheric sensing, finding several promising sensors and identifying some of the challenges in this approach. This work will help in developing inexpensive sensor networks for methane monitoring, which will aid in reducing methane leaks and emissions.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Cited articles
AMS Spectral Database (Unit Mass Resolution): http://cires.colorado.edu/jimenez-group/AMSsd/, last access: 10 September 2025.
Anand, A., Touré, N. E., Bahino, J., Gnamien, S., Hughes, A. F., Arku, R. E., Tawiah, V. O., Asfaw, A., Mamo, T., Hasheminassab, S., Bililign, S., Moschos, V., Westervelt, D. M., and Presto, A. A.: Low-Cost Hourly Ambient Black Carbon Measurements at Multiple Cities in Africa, Environ. Sci. Technol., 58, 12575–12584, https://doi.org/10.1021/acs.est.4c02297, 2024.
Andersson, A., Kirillova, E. N., Decesari, S., DeWitt, L., Gasore, J., Potter, K. E., Prinn, R. G., Rupakheti, M., de Dieu Ndikubwimana, J., Nkusi, J., and Safari, B.: Seasonal source variability of carbonaceous aerosols at the Rwanda Climate Observatory, Atmos. Chem. Phys., 20, 4561–4573, https://doi.org/10.5194/acp-20-4561-2020, 2020.
Brito, J., Freney, E., Dominutti, P., Borbon, A., Haslett, S. L., Batenburg, A. M., Colomb, A., Dupuy, R., Denjean, C., Burnet, F., Bourriane, T., Deroubaix, A., Sellegri, K., Borrmann, S., Coe, H., Flamant, C., Knippertz, P., and Schwarzenboeck, A.: Assessing the role of anthropogenic and biogenic sources on PM1 over southern West Africa using aircraft measurements, Atmos. Chem. Phys., 18, 757–772, https://doi.org/10.5194/acp-18-757-2018, 2018.
Climatology of eastern Africa, http://maproom.meteorwanda.gov.rw/maproom/ (last access: 30 July 2025).
Day, D. A., Campuzano-Jost, P., Nault, B. A., Palm, B. B., Hu, W., Guo, H., Wooldridge, P. J., Cohen, R. C., Docherty, K. S., Huffman, J. A., de Sá, S. S., Martin, S. T., and Jimenez, J. L.: A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry, Atmos. Meas. Tech., 15, 459–483, https://doi.org/10.5194/amt-15-459-2022, 2022.
DeWitt, H. L., Gasore, J., Rupakheti, M., Potter, K. E., Prinn, R. G., Ndikubwimana, J. D. D., Nkusi, J., and Safari, B.: Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda Climate Observatory , Atmos. Chem. Phys., 19, 2063–2078, https://doi.org/10.5194/acp-19-2063-2019, 2019.
Dhammapala, R.: Analysis of fine particle pollution data measured at 29 US diplomatic posts worldwide, Atmos. Environ., 213, 367–376, https://doi.org/10.1016/j.atmosenv.2019.05.070, 2019.
Engeln, A. V. and Teixeira, J.: A planetary boundary layer height climatology derived from ECMWF reanalysis data, J. Climate, 26, 6575–6590, https://doi.org/10.1175/JCLI-D-12-00385.1, 2013.
Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry, P. Natl. Acad. Sci. USA, 107, 6670–6675, https://doi.org/10.1073/pnas.0912340107, 2010.
Fisher, S., Bellinger, D. C., Cropper, M. L., Kumar, P., Binagwaho, A., Koudenoukpo, J. B., Park, Y., Taghian, G., and Landrigan, P. J.: Air pollution and development in Africa: impacts on health, the economy, and human capital, Lancet Planet. Health, 5, e681–e688, https://doi.org/10.1016/S2542-5196(21)00201-1, 2021.
Gahungu, P. and Kubwimana, J. R.: Trend Analysis and Forecasting air Pollution in Rwanda, https://doi.org/10.48550/arXiv.2205.10024, 2022.
Gaita, S. M., Boman, J., Gatari, M. J., Pettersson, J. B. C., and Janhäll, S.: Source apportionment and seasonal variation of PM2.5 in a Sub-Saharan African city: Nairobi, Kenya, Atmos. Chem. Phys., 14, 9977–9991, https://doi.org/10.5194/acp-14-9977-2014, 2014.
Gentner, D. R.: Review of urban secondary organic aerosol formation from gasoline and Diesel motor vehicle emissions, ACSP Publisher, https://doi.org/10.1021/acs.est.6b04509, 2016.
Global Burden of Disease: The State of Air Quality and Health Impacts in Africa, A Report from the State of Global Air Initiative, Boston, MA:Health Effects Institute, GBD, Africa, 2024.
Global Energy Monitor: Worldwide coal plants, 1200, https://globalenergymonitor.org/projects/global-coal-plant-tracker/tracker/ (last access: 20 November 2024), 2025.
Global Air pollution measurements, https://www.airnow.gov/?city=Kacyiru&country=RWA (last access: 5 June 2024).
Habineza, T., Presto, A., Gasore, J., Robinson, A., DeWitt H. L., and Croteau, P. L.: Chemical characterization and source apportionment of fine particulate matter in Kigali, Rwanda, using aerosol mass spectrometry, Carnegie Mellon University [data set], https://kilthub.cmu.edu/articles/dataset/_b_Chemical_characterization_and_source_apportionment_of_fine_particulate_matter_in_Kigali_Rwanda_using_aerosol_mass_spectrometry_b_/30442775 (last access: 11 November 2025), 2025.
He, X., Zheng, X., You, Y., Zhang, S., Zhao, B., Wang, X., Huang, G., Chen, T., Cao, Y., He, L., Chang, X., Wang, S., and Wu, Y.: Comprehensive chemical characterization of gaseous I/SVOC emissions from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry, Environ. Pollut., 305, https://doi.org/10.1016/j.envpol.2022.119284, 2022.
Health Effects Institute: The State of Air Quality and Health Impacts in Africa, A Report from the State of Global Air Initiative, Health Effects Institute, Boston, MA, Health Effects Institute, Africa, 2022.
Health Effects Institute: The State of Air Quality and Health Impacts in Africa, A Report from the State of Global Air Initiative, Health Effects Institute, Boston, MA, Health Effects Institute, Africa, 2023.
Huffman, J. A., Jayne, J. T., Drewnick, F., Aiken, A. C., Onasch, T., Worsnop, D. R., and Jimenez, J. L.: Design, modeling, optimization, and experimental tests of a particle beam width probe for the aerodyne aerosol mass spectrometer, Aerosol Sci. Tech., 39, 1143–1163, https://doi.org/10.1080/02786820500423782, 2005.
Kalisa, E. and Adams, M.: Population-scale COVID-19 curfew effects on urban black carbon concentrations and sources in Kigali, Rwanda, Urban Clim., 46, https://doi.org/10.1016/j.uclim.2022.101312, 2022.
Kalisa, E., Nagato, E. G., Bizuru, E., Lee, K. C., Tang, N., Pointing, S. B., Hayakawa, K., Archer, S. D. J., and Lacap-Bugler, D. C.: Characterization and risk assessment of atmospheric PM2.5 and PM10 particulate-bound PAHs and NPAHs in Rwanda, Central-East Africa, Environ. Sci. Technol., 52, 12179–12187, https://doi.org/10.1021/acs.est.8b03219, 2018.
Kalisa, E., Sudmant, A., Ruberambuga, R., and Bower, J.: Natural experiments in urban air quality: lessons from car-free days and COVID-19 lockdowns in Kigali, Rwanda, Cities Health, https://doi.org/10.1080/23748834.2025.2468017, 2025.
Kigali City: Overview, https://www.kigalicity.gov.rw/about/overview, last access: 30 July 2025.
Kirago, L., Gustafsson, Ö., Gaita, S. M., Haslett, S. L., Dewitt, H. L., Gasore, J., Potter, K. E., Prinn, R. G., Rupakheti, M., Ndikubwimana, J. D. D., Safari, B., and Andersson, A.: Atmospheric black carbon loadings and sources over Eastern Sub-Saharan Africa are governed by the regional Savanna fires, Environ. Sci. Technol., 56, 15460–15469, https://doi.org/10.1021/acs.est.2c05837, 2022.
Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T., Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R., and Deshler, T.: Transmission efficiency of an aerodynamic focusing lens system: comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer, Aerosol Sci. Tech., 41, 721–733, https://doi.org/10.1080/02786820701422278, 2007.
Magee Scientific: Aethalometer Model AE33 User Manual, Magee scentific, 2017.
Matthew, B. M., Middlebrook, A. M., and Onasch, T. B.: Collection efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols, Aerosol Sci. Tech., 42, 884–898, https://doi.org/10.1080/02786820802356797, 2008.
McFarlane, C., Isevulambire, P. K., Lumbuenamo, R. S., Ndinga, A. M. E., Dhammapala, R., Jin, X., McNeill, V. F., Malings, C., Subramanian, R., and Westervelt, D. M.: First measurements of ambient PM2.5 in Kinshasa, Democratic Republic of Congo and Brazzaville, Republic of Congo using field-calibrated low-cost sensors, Aerosol Air Qual. Res., 21, https://doi.org/10.4209/aaqr.200619, 2021.
MINEFRA: Republic Of Rwanda Ministry Of Infrastructure Rwanda Energy Policy, Mifrotra, Rwanda, 2015.
MINEFRA: Republic Of Rwanda Ministry Of Infrastructure, Energy Sector Strategic Plan, Guideline No. 12957, 3,1–176, Ministry of infrastructure, Rwanda, 2018a.
MINEFRA: Republic Of Rwanda Ministry Of Infrastructure, Energy Sector Strategic Plan, Ministry of Infrastructure, Rwanda, 2018b.
Miller, J. and Jin, L.: Global progress toward soot-free diesel vehicles in 2018, ICCT, Africa, 2018.
Mkoma, S. L., Maenhaut, W., Chi, X., Wang, W., and Raes, N.: Characterisation of PM10 atmospheric aerosols for the wet season 2005 at two sites in East Africa, Atmos. Environ., 43, 631–639, https://doi.org/10.1016/j.atmosenv.2008.10.008, 2009.
Ndamuzi, E., Akimana, R., Gahungu, P., and Bimenyimana, E.: Modeling and characterization of fine particulate matter dynamics in Bujumbura using low-cost sensors, J. Appl. Math. Phys., 12, 256–267, https://doi.org/10.4236/jamp.2024.121020, 2024.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., and Worsnop, D. R.: Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data, Environ. Sci. Technol., 45, 910–916, https://doi.org/10.1021/es102951k, 2011.
Nicholson, S. E.: Climate and climatic variability of rainfall over eastern Africa, Rev. Geophys., 55, 590–635, https://doi.org/10.1002/2016RG000544, 2017.
NIS Rwanda: Rwanda statistical year book 2021, Rwanda national Institute of statistics, Rwanda, 2021.
Niyibizi, A., Baptiste Nduwayezu, J., Ishimwe, T., and Ngirabakunzi, B.: Quantification of air pollution in Kigali City and its environmental and socio-economic impact in Rwanda, Am. J. Environ. Eng., 5, 106–119, https://doi.org/10.5923/j.ajee.20150504.03, 2015.
Nyeki, S., Li, F., Weingartner, E., Streit, N., Colbeck, I., Gäggeler, H. W., and Baltensperger, U.: The background aerosol size distribution in the free troposphere: an analysis of the annual cycle at a high-alpine site, J. Geophys. Res.-Atmos., 103, 31749–31761, https://doi.org/10.1029/1998JD200029, 1998.
Onyango, S., North, C. M., Ellaithy, H. A., Tumwesigye, P., Kang, C. M., Matthaios, V., Mukama, M., Nambogo, N., Wolfson, J. M., Ferguson, S., Asiimwe, S., Atuyambe, L., Santorino, D., Christiani, D. C., and Koutrakis, P.: Ambient PM2.5 temporal variation and source apportionment in Mbarara, Uganda, Aerosol Air Qual. Res., 24, https://doi.org/10.4209/aaqr.230203, 2024.
openaq: Explore the data, https://explore.openaq.org/?parameter=pm25#1/24.6/55.8, last access: 2 January 2025.
Oregon USA WaveMetrics: Igor pro wave matrix, https://www.wavemetrics.com/downloads/current/Igor%20Pro%209 (last access: 6 November 2024), 2024.
Paatero, P. and Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.
REMA: Inventory of Sources of Air Pollution in Rwanda Determination of Future Trends and Development of a National Air Quality Control Strategy, inventory no. 382754, 1–176, Rwanda Environment Management Authority (REMA), Rwanda, 2018.
Republic of Rwanda: Ministerial Guidelines for Clean Cooking Technologies, Ministry of Infrastracture, Rwanda, 2022.
Rwanda Standards Board: Ambient Air quality specification in Rwanda, RS EAC 751:2010, https://portal.rsb.gov.rw/webstore_preview.php?id=OTY3RkJrTndaM0EzcA (last access: 7 March 2024), 2010.
Rwanda Standards Board: Air quality specification by ciment facory in Rwanda, RS EAC 752:2011, https://portal.rsb.gov.rw/webstore_preview.php?id=OTY3RkJrTndaM0EzcA (last access: 7 March 2024), 2011.
Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., Weingartner, E., and Baltensperger, U. R. S.: Using aerosol light abosrption measurements for the quantitative determination of wood burning and traffic emission contribution to particulate matter, Environ. Sci. Technol., 42, 3316–3323, https://doi.org/10.1021/es702253m, 2008.
Singh, A., Ng'ang'a, D., Gatari, M. J., Kidane, A. W., Alemu, Z. A., Derrick, N., Webster, M. J., Bartington, S. E., Thomas, G. N., Avis, W., and Pope, F. D.: Air quality assessment in three east african cities using calibrated low-cost sensors with a focus on road-based hotspots, Environ. Res. Commun., 3, https://doi.org/10.1088/2515-7620/ac0e0a, 2021.
Sitati, C. N., Oludhe, C., Oyake, L., and Mbandi, A. M.: A street-level assessment of greenhouse gas emissions associated with traffic congestion in the city of Nairobi, Kenya, Clean Air J., 32, https://doi.org/10.17159/caj/2022/32/1.12546, 2022.
Smithsonia Institute: Global Volcanism Program, 2024, Report on Nyiragongo (DR Congo), in: Weekly Volcanic Activity Report, 3–9 July 2024, edited by: Sennert, S., Smithsonian Institution and US Geological Survey, https://volcano.si.edu/volcanolist_countries.cfm?country=DRC (last access: 7 March 2024), 2025.
STATISTICAL: Rwanda statistical year book 2021, Rwanda national Institute of statistics, Rwanda, 2021.
Subramanian, R., Kagabo, A. S., Baharane, V., Guhirwa, S., Sindayigaya, C., Malings, C., Williams, N. J., Kalisa, E., Li, H., Adams, P., Robinson, A. L., DeWitt, H. L., Gasore, J., and Jaramillo, P.: Air pollution in Kigali, Rwanda: spatial and temporal variability, source contributions, and the impact of car-free Sundays, Clean Air J., 30, 1–15, https://doi.org/10.17159/caj/2020/30/2.8023, 2020.
Taghian, G., Fisher, S., Chiles, T. C., Binagwaho, A., and Landrigan, P. J.: The burden of cardiovascular disease from air pollution in Rwanda, Ann. Glob. Health, 90, https://doi.org/10.5334/aogh.4322, 2024.
Tefera, W., Kumie, A., Berhane, K., Gilliland, F., Lai, A., Sricharoenvech, P., Patz, J., Samet, J., and Schauer, J. J.: Source apportionment of fine organic particulate matter (PM2.5) in central Addis Ababa, Ethiopia, Int. J. Environ. Res. Public. Health, 18, https://doi.org/10.3390/ijerph182111608, 2021.
Teledyne: User Manual Model T640 PM Mass Monitor, 2016.
The World Bank Group: Climate Change Knowledge Portal For Development Practitioners and Policy Makers, https://climateknowledgeportal.worldbank.org/country/rwanda/climate-data-historica, last access: 30 July 2025.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
UN Environment: Kigali City Air Quality Policy and Regulatory Situational Analysis, A report published by UN Environment in collaboration with Environmental Compliance Institute, 2018.
UN Environment: Kigali City Air Quality Policy and Regulatory Situational Analysis, A report published by UN Environment in collaboration with Environmental Compliance Institute, UN, Kigali City, 2019.
UNFCCC_Rwanda: REPUBLIC OF RWANDA Rwanda's First Biennial Update Report Under the United Nations Framework Convention on Climate Change (UNFCCC), 2021.
Uwimbabazi, P.: An Analysis of Umuganda: the Policy and Practice of Community Work in Rwanda, PhD Thesis, KwaZulu-Natal, 2012.
Werden, B. S., Giordano, M. R., Mahata, K., Islam, M. R., Goetz, J. D., Puppala, S. P., Saikawa, E., Panday, A. K., Yokelson, R. J., Stone, E. A., and DeCarlo, P. F.: Submicron aerosol composition and source contribution across the Kathmandu Valley, Nepal, in winter, ACS Earth Space Chem., 7, 49–68, https://doi.org/10.1021/acsearthspacechem.2c00226, 2023.
World Health Organization (WHO): The Global Health Observatory, Explore a world of health data, Air pollution data portal https://www.who.int/data/gho/data/themes/air-pollution, last access: 2 January 2025.
Xu, Q., Wang, S., Jiang, J., Bhattarai, N., Li, X., Chang, X., Qiu, X., Zheng, M., Hua, Y., and Hao, J.: Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China, Sci. Total Environ., 689, 1293–1303, https://doi.org/10.1016/j.scitotenv.2019.06.294, 2015.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., and Sun, Y.: Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review, Anal. Bioanal. Chem., 401, 3045–3067, https://doi.org/10.1007/s00216-011-5355-y, 2011.
Short summary
This study reports year-long PM1 (particulate matter) chemical composition in Eastern Africa using aerosol mass spectrometry. Results show PM is dominated by organic aerosol (73 %), black carbon (16 %), and inorganics (11 %), with BC largely from fossil fuel (59 %) and biomass burning (41 %). Findings highlight the impact of solid fuels and aging vehicles and stress the need for regional mitigation strategies to reduce air pollution-related health risks.
This study reports year-long PM1 (particulate matter) chemical composition in Eastern Africa...
Altmetrics
Final-revised paper
Preprint