Articles | Volume 25, issue 21
https://doi.org/10.5194/acp-25-15469-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-15469-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric and watershed modelling of trifluoroacetic acid from oxidation of HFO-1234ze(E) released by prospective pressurised metered-dose inhaler use in three major river basins
Shivendra G. Tewari
CORRESPONDING AUTHOR
Clinical Pharmacology & Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, USA
Krish Vijayaraghavan
Ramboll, Novato, USA
Ramboll, Novato, USA
Liji M. David
Ramboll, Novato, USA
Katie Tuite
Ramboll, Novato, USA
Felix Kristanovich
Ramboll, Novato, USA
Yuan Zhuang
Ramboll, Novato, USA
Benjamin Yang
Ramboll, Novato, USA
Cecilia Hurtado
Ramboll, Novato, USA
Dimitrios K. Papanastasiou
Honeywell, Buffalo, USA
Paul Giffen
Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
Holly Kimko
Clinical Pharmacology & Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, USA
Megan Gibbs
Clinical Pharmacology & Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, USA
Stefan Platz
Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Baar, Switzerland
Related authors
No articles found.
Katie Tuite, Alan M. Dunker, and Greg Yarwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-3695, https://doi.org/10.5194/egusphere-2025-3695, 2025
Short summary
Short summary
Gas-phase chemical mechanisms are key components of air quality models used by regulatory agencies for air quality and public health planning. We use modeled ozone concentrations and Ozone Production Efficiency (OPE) to compare four chemical mechanisms and find that OPE is a viable comparison metric under atmospheric conditions where nitrogen oxides are limited. Using OPE to predict how ozone responds to emissions reductions, however, is an oversimplification that can overstate ozone reductions.
Ling Huang, Benjie Chen, Zi'ang Wu, Katie Tuite, Pradeepa Vennam, Greg Yarwood, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3921, https://doi.org/10.5194/egusphere-2025-3921, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Secondary organic aerosol (SOA) constitutes a major component of atmospheric aerosol that models must account for to assess how human activities influence air quality, climate, and public health. We find substantial differences in how current air quality models represent SOA highlighting a lack of consensus within the modelling community. Our findings emphasize the need to recognize the limitations of current SOA schemes in the context of air quality management and policy development.
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
Cited articles
Adlunger, K., Anke, J., Bachem, G., Banning, H., Biegel-Engler, A., Blondzik, K., Braun, U., Eckhardt, A., Gildemeister, D., Hilliges, F., Hoffmann, G., Jentzsch, F., Klitzke, S., Kuckelkorn, J., Martens, K., Müller, A., Pickl, C., Pirntke, U., Rechenberg, J., Sättler, D., Schmidt, U., Speichert, G., Warnke, I., Wehner, J., and Wischer, R.: Reducing the input of chemicals into waters: trifluoroacetate (TFA) as a persistent and mobile substance with many sources, Dessau-Roßlau, Germany, 1–52, 2022.
Ammann, M., Cox, R., Crowley, J., Jenkin, M., Mellouki, A., Rossi, M., Troe, J., Wallington, T., Cox, B., and Atkinson, R.: IUPAC task group on atmospheric chemical kinetic data evaluation, https://iupac.aeris-data.fr (last access: 26 October 2023), 2016.
Arp, H. P. H., Gredelj, A., Glüge, J., Scheringer, M., and Cousins, I. T.: The global threat from the irreversible accumulation of trifluoroacetic acid (TFA), Environmental Science & Technology, 58, 19925–19935, 2024.
Bell, J., Ringall, A., Khezrian, M., Kocks, J., and Usmani, O.: An assessment of pressurized metered-dose inhaler use in countries in Europe and the rest of the world, in: D22. Hot topics in behavioral sciences and health services research, American Thoracic Society, A6315–A6315, 2023.
Bian, H. and Prather, M. J.: Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models, Journal of Atmospheric Chemistry, 41, 281–296, 2002.
Burkholder, J., Sander, S., Abbatt, J., Barker, J., Huie, R., Kolb, C., Kurylo, M., Orkin, V., Wilmouth, D., and Wine, P.: Chemical kinetics and photochemical data for use in atmospheric studies: evaluation number 18, Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space, https://jpldataeval.jpl.nasa.gov (last access: 26 October 2023), 2015a.
Burkholder, J. B., Cox, R., and Ravishankara, A.: Atmospheric degradation of ozone depleting substances, their substitutes, and related species, Chemical Reviews, 115, 3704–3759, 2015b.
Burkholder, J., Sander, S., Abbatt, J., Barker, J., Cappa, C., Crounse, J., Dibble, T., Huie, R., Kolb, C., and Kurylo, M.: Chemical kinetics and photochemical data for use in atmospheric studies; evaluation number 19, Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space, https://jpldataeval.jpl.nasa.gov (last access: 26 October 2023), 2020.
Calvert, J., Mellouki, A., Orlando, J., Pilling, M., and Wallington, T.: Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, Oxford, 2011.
Carn, S., Yang, K., Prata, A., and Krotkov, N.: Extending the long-term record of volcanic SO2 emissions with the Ozone Mapping and Profiler Suite nadir mapper, Geophysical Research Letters, 42, 925–932, 2015.
Eastham, S. D., Weisenstein, D. K., and Barrett, S. R.: Development and evaluation of the unified tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem, Atmospheric Environment, 89, 52–63, 2014.
Freeling, F., Behringer, D., Heydel, F., Scheurer, M., Ternes, T. A., and Nödler, K.: Trifluoroacetate in precipitation: deriving a benchmark data set, Environmental Science & Technology, 54, 11210–11219, 2020.
Garavagno, M. d. l. A., Holland, R., Khan, M. A. H., Orr-Ewing, A. J., and Shallcross, D. E.: Trifluoroacetic acid: toxicity, sources, sinks and future prospects, Sustainability, 16, 31 pp., https://doi.org/10.3390/su16062382, 2024.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), Journal of Climate, 30, 5419–5454, 2017.
George, C., Saison, J., Ponche, J., and Mirabel, P.: Kinetics of mass transfer of carbonyl fluoride, trifluoroacetyl fluoride, and trifluoroacetyl chloride at the air/water interface, The Journal of Physical Chemistry, 98, 10857–10862, 1994.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Güsten, H. and Sabljic, A.: QSARs for soil sorption, in: Overview of Structure–Activity Relationships for Environmental Endpoints, edited by: Hermens, J. L. M., report prepared within the project “QSAR for Prediction of Fate and Effects of Chemicals in the Environment” (Environmental Technologies RTD Programme, DG XII/D-1, European Commission, contract EV5-CT92-0211), 1995.
Heath, E. A.: Amendment to the Montreal protocol on substances that deplete the ozone layer (Kigali amendment), International Legal Materials, 56, 193–205, 2017.
Henne, S., Shallcross, D. E., Reimann, S., Xiao, P., Brunner, D., O'Doherty, S., and Buchmann, B.: Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe, Environmental Science & Technology, 46, 1650–1658, 2012.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hu, L., Millet, D. B., Baasandorj, M., Griffis, T. J., Turner, P., Helmig, D., Curtis, A. J., and Hueber, J.: Isoprene emissions and impacts over an ecological transition region in the US Upper Midwest inferred from tall tower measurements, Journal of Geophysical Research: Atmospheres, 120, 3553–3571, 2015.
Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.: Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmos. Chem. Phys., 12, 7779–7795, https://doi.org/10.5194/acp-12-7779-2012, 2012.
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 3137–3157, https://doi.org/10.5194/acp-11-3137-2011, 2011.
Javadi, M. S., Søndergaard, R., Nielsen, O. J., Hurley, M. D., and Wallington, T. J.: Atmospheric chemistry of trans-CF3CH=CHF: products and mechanisms of hydroxyl radical and chlorine atom initiated oxidation, Atmos. Chem. Phys., 8, 3141–3147, https://doi.org/10.5194/acp-8-3141-2008, 2008.
Jenkin, M., Andersen, M. S., Hurley, M., Wallington, T., Taketani, F., and Matsumi, Y.: A kinetics and mechanistic study of the OH and NO2 initiated oxidation of cyclohexa-1, 3-diene in the gas phase, Physical Chemistry Chemical Physics, 7, 1194–1204, 2005.
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development, Atmospheric Environment, 31, 81–104, 1997.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
Jenkin, M. E., Valorso, R., Aumont, B., and Rickard, A. R.: Estimation of rate coefficients and branching ratios for reactions of organic peroxy radicals for use in automated mechanism construction, Atmos. Chem. Phys., 19, 7691–7717, https://doi.org/10.5194/acp-19-7691-2019, 2019.
Kwok, E. S. and Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update, Atmospheric Environment, 29, 1685–1695, 1995.
Leather, K. E., McGillen, M. R., Ghalaieny, M., Shallcross, D. E., and Percival, C. J.: Temperature-dependent kinetics for the ozonolysis of selected chlorinated alkenes in the gas phase, International Journal of Chemical Kinetics, 43, 120–129, 2011.
Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham, S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R.: Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models, Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, 2021.
Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A., Shen, L., and Jacob, D. J.: An Adaptive Auto-Reduction Solver for Speeding Up Integration of Chemical Kinetics in Atmospheric Chemistry Models: Implementation and Evaluation in the Kinetic Pre-Processor (KPP) Version 3.0.0, Journal of Advances in Modeling Earth Systems, 15, e2022MS003293, https://doi.org/10.1029/2022MS003293, 2023.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, Journal of Geophysical Research: Atmospheres, 106, 12109–12128, 2001.
Logan, L.: EPA Proposes Phasedown Program For Climate-Warming HFCs, Inside EPA's Clean Air Report, 32, 11–11, 2021.
Long, B., Xia, Y., and Truhlar, D. G.: Quantitative kinetics of HO2 reactions with aldehydes in the atmosphere: High-order dynamic correlation, anharmonicity, and falloff effects are all important, Journal of the American Chemical Society, 144, 19910–19920, 2022.
Luecken, D. J., Waterland, R. L., Papasavva, S., Taddonio, K. N., Hutzell, W. T., Rugh, J. P., and Andersen, S. O.: Ozone and TFA impacts in North America from degradation of 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf), a potential greenhouse gas replacement, Environmental Science & Technology, 44, 343–348, 2010.
Madronich, S., Sulzberger, B., Longstreth, J., Schikowski, T., Andersen, M. S., Solomon, K., and Wilson, S.: Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate, Photochemical & Photobiological Sciences, 22, 1129–1176, 2023.
Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Clair, J. M. St., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H., McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R. M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823–5838, https://doi.org/10.5194/acp-10-5823-2010, 2010.
Maricq, M. M., Szente, J. J., Khitrov, G. A., and Francisco, J. S.: The CF3C (O) O2 radical. Its UV spectrum, self-reaction kinetics, and reaction with NO, The Journal of Physical Chemistry, 100, 4514–4520, 1996.
McGillen, M. R., Fried, Z. T., Khan, M. A. H., Kuwata, K. T., Martin, C. M., O'Doherty, S., Pecere, F., Shallcross, D. E., Stanley, K. M., and Zhang, K.: Ozonolysis can produce long-lived greenhouse gases from commercial refrigerants, Proceedings of the National Academy of Sciences, 120, e2312714120, https://doi.org/10.1073/pnas.2312714120, 2023.
Meng, J., Martin, R. V., Ginoux, P., Hammer, M., Sulprizio, M. P., Ridley, D. A., and van Donkelaar, A.: Grid-independent high-resolution dust emissions (v1.0) for chemical transport models: application to GEOS-Chem (12.5.0), Geosci. Model Dev., 14, 4249–4260, https://doi.org/10.5194/gmd-14-4249-2021, 2021.
Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.: Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, Journal of Geophysical Research: Atmospheres, 117, D19105, https://doi.org/10.1029/2012JD017934, 2012.
Neale, R. E., Barnes, P. W., Robson, T. M., Neale, P. J., Williamson, C. E., Zepp, R. G., Wilson, S. R., Madronich, S., Andrady, A. L., and Heikkilä, A. M.: Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020, Photochemical & Photobiological Sciences, 20, 1–67, 2021.
Orlando, J. J., Nozière, B., Tyndall, G. S., Orzechowska, G. E., Paulson, S. E., and Rudich, Y.: Product studies of the OH-and ozone-initiated oxidation of some monoterpenes, Journal of Geophysical Research: Atmospheres, 105, 11561–11572, 2000.
Pérez-Peña, M. P., Fisher, J. A., Hansen, C., and Kable, S. H.: Assessing the atmospheric fate of trifluoroacetaldehyde (CF3 CHO) and its potential as a new source of fluoroform (HFC-23) using the AtChem2 box model, Environmental Science: Atmospheres, 3, 1767–1777, 2023.
Pimlott, M. A., Pope, R. J., Kerridge, B. J., Latter, B. G., Knappett, D. S., Heard, D. E., Ventress, L. J., Siddans, R., Feng, W., and Chipperfield, M. P.: Investigating the global OH radical distribution using steady-state approximations and satellite data, Atmos. Chem. Phys., 22, 10467–10488, https://doi.org/10.5194/acp-22-10467-2022, 2022.
Sander, S., Friedl, R., Golden, D., Kurylo, M., Moortgat, G., Wine, P., Ravishankara, A., Kolb, C., Molina, M., and Finlayson-Pitts, B.: Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 15, JPL Publication 06‑3, Jet Propulsion Laboratory, Pasadena, CA, https://jpldataeval.jpl.nasa.gov (last access: 26 October 2023), 2006.
Sander, S., Friedl, R., Golden, D., Kurylo, M., Moortgat, G., Wine, P., Ravishankara, A., Kolb, C., Molina, M., and Finlyason-Pitts, B.: Chemical kinetics and photochemical data for use in atmospheric studies: Evaluation number 15, Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology, https://jpldataeval.jpl.nasa.gov (last access: 26 October 2023), 2010.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
Simone, N. W., Stettler, M. E., and Barrett, S. R.: Rapid estimation of global civil aviation emissions with uncertainty quantification, Transportation Research Part D: Transport and Environment, 25, 33–41, 2013.
Søndergaard, R., Nielsen, O. J., Hurley, M., Wallington, T., and Singh, R.: Atmospheric chemistry of trans-CF3CHCHF: kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3, Chemical Physics Letters, 443, 199–204, 2007.
Soriano, J. B., Kendrick, P. J., Paulson, K. R., Gupta, V., Abrams, E. M., Adedoyin, R. A., Adhikari, T. B., Advani, S. M., Agrawal, A., Ahmadian, E., and Alahdab, F.: Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017, The Lancet Respiratory Medicine, 8, 585–596, 2020.
Sturm, S., Freeling, F., Bauer, F., Vollmer, T., aus der Beek, T., and Karges, U.: Trifluoroacetate (TFA): Laying the foundations for effective mitigation – Spatial analysis of the input pathways into the water cycle, German Environment Agency (Umweltbundesamt), Dessau-Roßlau, 75 pp., 2023.
Sulbaek-Andersen, M., Stenby, C., Nielsen, O., Hurley, M., Ball, J., Wallington, T., Martin, J., Ellis, D., and Mabury, S.: Atmospheric Chemistry of n-C x F2 x+ 1CHO (x= 1, 3, 4): Mechanism of the C x F2 x+ 1C (O) O2+ HO2 Reaction, The Journal of Physical Chemistry A, 108, 6325–6330, 2004.
Sulbaek-Andersen, M. P. and Nielsen, O. J.: Tropospheric photolysis of CF3CHO, Atmospheric Environment, 272, 118935, https://doi.org/10.1016/j.atmosenv.2021.118935, 2022.
Sulbaek-Andersen, M. P., Schmidt, J. A., Volkova, A., and Wuebbles, D. J.: A three-dimensional model of the atmospheric chemistry of E and Z-CF3CH= CHCl (HCFO-1233 (zd)(E/Z)), Atmospheric Environment, 179, 250–259, 2018.
Tewari, S. G., Bell, J. P., Budgen, N., Platz, S., Gibbs, M., Newham, P., and Kimko, H.: Pressurized metered-dose inhalers using next-generation propellant HFO-1234ze (E) deposit negligible amounts of trifluoracetic acid in the environment, Frontiers in Environmental Science, 11, 1297920, https://doi.org/10.3389/fenvs.2023.1297920, 2023.
The International GEOS-Chem User Community: geoschem/geos-chem: GEOS-Chem 14.2.2 (14.2.2), Zenodo, https://doi.org/10.5281/zenodo.10034733, 2023.
Tzompa-Sosa, Z. A., Mahieu, E., Franco, B., Keller, C. A., Turner, A., Helmig, D., Fried, A., Richter, D., Weibring, P., and Walega, J.: Revisiting global fossil fuel and biofuel emissions of ethane, Journal of Geophysical Research: Atmospheres, 122, 2493–2512, 2017.
Official Journal of the European Union: Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases, amending Directive (EU) 2019/1937 and repealing Regulation (EU) No 517/2014 (Text with EEA relevance), https://eur-lex.europa.eu/eli/reg/2024/573/oj/eng (last access: 19 June 2025), 2024.
United States Environmental Protection Agency: Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Final EPA530-R-05-006: Solid Waste and Emergency Response, Washington, D.C., 2005.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., and Galy-Lacaux, C.: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, Atmospheric Environment, 93, 3–100, 2014.
Wallington, T. J., Sehested, J., and Nielsen, O. J.: Atmospheric chemistry of CF3C (O) O2 radicals. Kinetics of their reaction with NO2 and kinetics of the thermal decomposition of the product CF3C (O) O2NO2, Chemical Physics Letters, 226, 563–569, 1994.
Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 1. Model formulation, Journal of Geophysical Research: Atmospheres, 103, 10713–10725, 1998.
Wang, Z., Wang, Y., Li, J., Henne, S., Zhang, B., Hu, J., and Zhang, J.: Impacts of the degradation of 2, 3, 3, 3-tetrafluoropropene into trifluoroacetic acid from its application in automobile air conditioners in China, the United States, and Europe, Environmental Science & Technology, 52, 2819–2826, 2018.
Weng, H., Lin, J., Martin, R., Millet, D. B., Jaeglé, L., Ridley, D., Keller, C., Li, C., Du, M., and Meng, J.: Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds, Scientific Data, 7, 148, https://doi.org/10.1038/s41597-020-0488-5, 2020.
Wesely, M.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmospheric Environment, 41, 52–63, 2007.
Williams, A. J., Grulke, C. M., Edwards, J., McEachran, A. D., Mansouri, K., Baker, N. C., Patlewicz, G., Shah, I., Wambaugh, J. F., Judson, R. S., and Richard, A. M.: The CompTox Chemistry Dashboard: a community data resource for environmental chemistry, J. Cheminform, 9, 61, https://doi.org/10.1186/s13321-017-0247-6, 2017.
World Meteorological Organization (WMO): Scientific Assessment of Ozone Depletion, Global Atmosphere Watch Report No. 278, 2022.
Xiao, Y., Logan, J. A., Jacob, D. J., Hudman, R. C., Yantosca, R., and Blake, D. R.: Global budget of ethane and regional constraints on US sources, Journal of Geophysical Research: Atmospheres, 113, D21306, https://doi.org/10.1029/2007JD009415, 2008.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology, Journal of Geophysical Research: Atmospheres, 108, D14, 4416, https://doi.org/10.1029/2002JD002775, 2003.
Short summary
This study indicates that using HFO‑1234ze(E) as a medical propellant in pressurized metered dose inhalers (pMDIs) reduces environmental impact compared with current propellants, and that associated trifluoroacetic acid (TFA) formation levels are predicted to be significantly below all reported safety thresholds. The results suggest this next‑generation propellant supports climate goals with its near‑zero global warming potential (GWP) and offers a sustainable substitute, helping ensure future pMDI supply for people with chronic respiratory diseases.
This study indicates that using HFO‑1234ze(E) as a medical propellant in pressurized metered...
Altmetrics
Final-revised paper
Preprint