Articles | Volume 25, issue 18
https://doi.org/10.5194/acp-25-11557-2025
https://doi.org/10.5194/acp-25-11557-2025
Research article
 | 
29 Sep 2025
Research article |  | 29 Sep 2025

Effects of ozone–climate interactions on the long-term temperature trend in the Arctic stratosphere

Siyi Zhao, Jiankai Zhang, Xufan Xia, Zhe Wang, and Chongyang Zhang

Related authors

The joint effect of mid-latitude winds and the westerly quasi-biennial oscillation phase on the Antarctic stratospheric polar vortex and ozone
Zhe Wang, Jiankai Zhang, Siyi Zhao, and Douwang Li
Atmos. Chem. Phys., 25, 3465–3480, https://doi.org/10.5194/acp-25-3465-2025,https://doi.org/10.5194/acp-25-3465-2025, 2025
Short summary
The Impact of the Stratospheric Quasi-Biennial Oscillation on Arctic Polar Stratospheric Cloud Occurrence
Douwang Li, Zhe Wang, Siyi Zhao, Jiankai Zhang, Wuhu Feng, and Martyn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2025-955,https://doi.org/10.5194/egusphere-2025-955, 2025
Short summary

Cited articles

Abalos, M., Randel, W. J., Kinnison, D. E., and Serrano, E.: Quantifying tracer transport in the tropical lower stratosphere using WACCM, Atmos. Chem. Phys., 13, 10591–10607, https://doi.org/10.5194/acp-13-10591-2013, 2013. 
Albers, J. R. and Nathan, T. R.: Ozone Loss and Recovery and the Preconditioning of Upward-Propagating Planetary Wave Activity, J. Atmos. Sci., 70, 3977–3994, https://doi.org/10.1175/JAS-D-12-0259.1, 2013. 
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, Academic Press, Orlando, 489 pp., ISBN: 0-12-058575-8, 1987. 
Bohlinger, P., Sinnhuber, B.-M., Ruhnke, R., and Kirner, O.: Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends, Atmos. Chem. Phys., 14, 1679–1688, https://doi.org/10.5194/acp-14-1679-2014, 2014. 
Calvo, N., Polvani, L. M., and Solomon, S.: On the surface impact of Arctic stratospheric ozone extremes, Environ. Res. Lett., 10, 094003, https://doi.org/10.1088/1748-9326/10/9/094003, 2015. 
Download
Short summary
This study explores how ozone–climate interactions affect long-term Arctic stratospheric temperature (AST) changes by isolating the ozone–circulation coupling process. From 1980 to 2000, ozone–climate interactions raise AST in early winter by promoting upward wave propagation and Brewer–Dobson circulation, whereas they decrease AST in late winter and spring by reducing ozone shortwave heating. Our results highlight the impact of ozone–climate interactions on the intraseasonal reversal of AST trends.
Share
Altmetrics
Final-revised paper
Preprint