Articles | Volume 24, issue 14
https://doi.org/10.5194/acp-24-8139-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-8139-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Audrey Fortems-Cheiney
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
now at: Science Partners, Quai de Jemmapes, 75010 Paris, France
Grégoire Broquet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Isabelle Pison
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Antoine Berchet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Elise Potier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
now at: Science Partners, Quai de Jemmapes, 75010 Paris, France
Gaëlle Dufour
Université Paris Cité and Univ. Paris-Est Créteil, CNRS, LISA, 75013 Paris, France
Adriana Coman
Univ. Paris-Est Créteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France
Dilek Savas
Université Paris Cité and Univ. Paris-Est Créteil, CNRS, LISA, 75013 Paris, France
Guillaume Siour
Univ. Paris-Est Créteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France
Henk Eskes
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Model code and software
The Community Inversion Framework: codes and documentation (v1.1) Antoine Berchet, et al. https://doi.org/10.5281/zenodo.6304912
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of...
Altmetrics
Final-revised paper
Preprint