Articles | Volume 24, issue 7
https://doi.org/10.5194/acp-24-3905-2024
https://doi.org/10.5194/acp-24-3905-2024
Research article
 | 
03 Apr 2024
Research article |  | 03 Apr 2024

Negligible temperature dependence of the ozone–iodide reaction and implications for oceanic emissions of iodine

Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter

Related authors

An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024,https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Temperature-dependent rate coefficients for the reactions of OH radicals with selected alkanes, aromatic compounds, and monoterpenes
Florian Berg, Anna Novelli, René Dubus, Andreas Hofzumahaus, Frank Holland, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 24, 13715–13731, https://doi.org/10.5194/acp-24-13715-2024,https://doi.org/10.5194/acp-24-13715-2024, 2024
Short summary
Exploring HONO production from particulate nitrate photolysis in representative regions of China: characteristics, influencing factors, and environmental implications
Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang
Atmos. Chem. Phys., 24, 13183–13198, https://doi.org/10.5194/acp-24-13183-2024,https://doi.org/10.5194/acp-24-13183-2024, 2024
Short summary
Kinetics of the reactions of OH with CO, NO, NO2 and of HO2 with NO2 in air at 1 atm pressure, room temperature and tropospheric water vapour concentrations
Michael Rolletter, Andreas Hofzumahaus, Anna Novelli, Andreas Wahner, and Hendrik Fuchs
EGUsphere, https://doi.org/10.5194/egusphere-2024-3550,https://doi.org/10.5194/egusphere-2024-3550, 2024
Short summary
Formation of reactive nitrogen species promoted by iron ions through the photochemistry of a neonicotinoid insecticide
Zhu Ran, Yanan Hu, Yuanzhe Li, Xiaoya Gao, Can Ye, Shuai Li, Xiao Lu, Yongming Luo, Sasho Gligorovski, and Jiangping Liu
Atmos. Chem. Phys., 24, 11943–11954, https://doi.org/10.5194/acp-24-11943-2024,https://doi.org/10.5194/acp-24-11943-2024, 2024
Short summary
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes determined by the relative-rate technique
Yanyan Xin, Chengtang Liu, Xiaoxiu Lun, Shuyang Xie, Junfeng Liu, and Yujing Mu
Atmos. Chem. Phys., 24, 11409–11429, https://doi.org/10.5194/acp-24-11409-2024,https://doi.org/10.5194/acp-24-11409-2024, 2024
Short summary

Cited articles

Campos, M. L. A., Farrenkopf, A. M., Jickells, T. D., and Luther, G. W.: A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-series station and Hawaii Ocean Time-series station, Deep-Sea Res. Pt. II, 43, 455–466, https://doi.org/10.1016/0967-0645(95)00100-x, 1996. a
Campos, M. L. A., Sanders, R., and Jickells, T. D.: The dissolved iodate and iodide distribution in the South Atlantic from the Weddell Sea to Brazil, Mar. Chem., 65, 167–175, https://doi.org/10.1016/S0304-4203(98)00094-2, 1999. a
Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W., Parthipan, R., Wilson, J., and Plane, J. M.: Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine, Nat. Geosci., 6, 108–111, https://doi.org/10.1038/ngeo1687, 2013. a, b, c
Cen-Lin, H. and Tzung-May, F.: Air–Sea Exchange of Volatile Organic Compounds: A New Model with Microlayer Effects, Atmospheric and Oceanic Science Letters, 6, 97–102, https://doi.org/10.1080/16742834.2013.11447063, 2013. a
Chance, R. J., Baker, A. R., Carpenter, L. J., and Jickells, T. D.: The distribution of iodide at the sea surface, Environ. Sci.-Proc. Imp., 16, 1841–1859, https://doi.org/10.1039/c4em00139g, 2014. a, b, c
Download
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
Share
Altmetrics
Final-revised paper
Preprint