Articles | Volume 24, issue 5
https://doi.org/10.5194/acp-24-3029-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-3029-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial disparities of ozone pollution in the Sichuan Basin spurred by extreme, hot weather
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
Yunsong Du
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
Dongyang Chen
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
Haiyan Meng
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China
Li Zhou
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
Guangming Shi
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
Miao Feng
Chengdu Academy of Environmental Sciences, Chengdu, 610072, PR China
Wei Li
Chengdu Academy of Environmental Sciences, Chengdu, 610072, PR China
Mulan Chen
Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, 401147, PR China
Zhenliang Li
Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, 401147, PR China
Fumo Yang
CORRESPONDING AUTHOR
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, PR China
Related authors
Hua Lu, Min Xie, Nan Wang, Bojun Liu, Jinyue Jiang, Bingliang Zhuang, Ying Zhang, Meixuan Wu, Jianfeng Yang, Kunqin Lv, and Danyang Ma
Atmos. Chem. Phys., 25, 10141–10158, https://doi.org/10.5194/acp-25-10141-2025, https://doi.org/10.5194/acp-25-10141-2025, 2025
Short summary
Short summary
Fires are important sources of air pollution in many regions. This study isolates fire-specific PM2.5 from observations, showing its increasing proportion in recent years. Our findings indicate that fire-specific PM2.5 disproportionately affects impoverished populations in the Asia Pacific. Furthermore, we suggest that, under future climate change, fire-specific PM2.5 will likely continue rising. This highlights the need for interventions to reduce fire-related air pollution and its health impacts.
Nan Wang, Song Liu, Jiawei Xu, Yanyu Wang, Chun Li, Yuning Xie, Hua Lu, and Fumo Yang
Atmos. Chem. Phys., 25, 8859–8870, https://doi.org/10.5194/acp-25-8859-2025, https://doi.org/10.5194/acp-25-8859-2025, 2025
Short summary
Short summary
We found that climate warming and changes in vegetation have increased biogenic volatile organic compound emissions in the Pearl River Delta region. These increasing natural emissions, mainly due to climate warming, are weakening the benefits of reducing human-made emissions through control, leading to higher ozone levels. This work helps us understand how climate change influences air quality and provides important insights for improving pollution control strategies in the future.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Nan Wang, Hongyue Wang, Xin Huang, Xi Chen, Yu Zou, Tao Deng, Tingyuan Li, Xiaopu Lyu, and Fumo Yang
Atmos. Chem. Phys., 24, 1559–1570, https://doi.org/10.5194/acp-24-1559-2024, https://doi.org/10.5194/acp-24-1559-2024, 2024
Short summary
Short summary
This study explores the influence of extreme-weather-induced natural processes on ozone pollution, which is often overlooked. By analyzing meteorological factors, natural emissions, chemistry pathways and atmospheric transport, we discovered that these natural processes could substantially exacerbate ozone pollution. The findings contribute to a deeper understanding of ozone pollution and offer valuable insights for controlling ozone pollution in the context of global warming.
Hua Lu, Min Xie, Nan Wang, Bojun Liu, Jinyue Jiang, Bingliang Zhuang, Ying Zhang, Meixuan Wu, Jianfeng Yang, Kunqin Lv, and Danyang Ma
Atmos. Chem. Phys., 25, 10141–10158, https://doi.org/10.5194/acp-25-10141-2025, https://doi.org/10.5194/acp-25-10141-2025, 2025
Short summary
Short summary
Fires are important sources of air pollution in many regions. This study isolates fire-specific PM2.5 from observations, showing its increasing proportion in recent years. Our findings indicate that fire-specific PM2.5 disproportionately affects impoverished populations in the Asia Pacific. Furthermore, we suggest that, under future climate change, fire-specific PM2.5 will likely continue rising. This highlights the need for interventions to reduce fire-related air pollution and its health impacts.
Nan Wang, Song Liu, Jiawei Xu, Yanyu Wang, Chun Li, Yuning Xie, Hua Lu, and Fumo Yang
Atmos. Chem. Phys., 25, 8859–8870, https://doi.org/10.5194/acp-25-8859-2025, https://doi.org/10.5194/acp-25-8859-2025, 2025
Short summary
Short summary
We found that climate warming and changes in vegetation have increased biogenic volatile organic compound emissions in the Pearl River Delta region. These increasing natural emissions, mainly due to climate warming, are weakening the benefits of reducing human-made emissions through control, leading to higher ozone levels. This work helps us understand how climate change influences air quality and provides important insights for improving pollution control strategies in the future.
Xi Chen, Xiaoyang Chen, Long Wang, Shucheng Chang, Minhui Li, Chong Shen, Chenghao Liao, Yongbo Zhang, Mei Li, and Xuemei Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2635, https://doi.org/10.5194/egusphere-2025-2635, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Typhoons moving north near China create ozone pollution in Guangdong by combining strong sunlight with stagnant air. These tyhoons also push ozone-rich air from high altitudes down to ground level. When multiple north-moving typhoons occur back-to-back, they cause widespread and long-lasting ozone pollution. Vertical air currents during these events can contribute up to 16 % of boundary layer ozone.
Zhuozhi Shu, Fumo Yang, Guangming Shi, Yuqing Zhang, Yongjie Huang, Xinning Yu, Baiwan Pan, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2628, https://doi.org/10.5194/egusphere-2025-2628, 2025
Short summary
Short summary
We targeted four stratospheric intrusion episodes to investigate the impacts of cross-layer transport of stratospheric O3 on the near-surface environmental atmosphere over Sichuan Basin and uncover multi-scale atmospheric circulation coupling mechanisms with the seasonally discrepant terrain effects of Tibetan Plateau. Results provided the critical insights into understanding of regional O3 pollution genesis with the exceptional natural sources contribution derived from the stratosphere.
Liuwei Kong, Xin Li, Yu Wang, Sihua Lu, Ying Liu, Shengrong Lou, Wenxin Zhou, Xinping Yang, Yan Ding, Yi Liu, Mengdi Song, Shuyu He, Kai Wang, Feng Wang, Xiaocen Shi, Jian Wang, Yun Zou, Chaofan Lian, Hefan Liu, Miao Feng, Xiaoya Dou, Limin Zeng, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2322, https://doi.org/10.5194/egusphere-2025-2322, 2025
Short summary
Short summary
Our research investigates the volatile organic compounds evaporative emission characteristics of China's typical representative vehicle regulatory standards. The emission factors, chemical composition characteristics and source profiles of volatile organic compounds were determined. The hydroxyl radical total reactivity and compositions of evaporative emissions were quantified, and identified key volatile organic compounds reactive species contributing to atmospheric photochemical processes.
Chao Peng, Yan Ding, Zhenliang Li, Tianyu Zhai, Xinping Yang, Mi Tian, Yang Chen, Xin Long, Haohui Tang, Guangming Shi, Liuyi Zhang, Kangyin Zhang, Fumo Yang, and Chongzhi Zhai
EGUsphere, https://doi.org/10.5194/egusphere-2025-101, https://doi.org/10.5194/egusphere-2025-101, 2025
Short summary
Short summary
Organic aerosol is a dominant component of atmospheric aerosol worldwide, and it is recognized as a key factor affecting air quality and possibly climate. We revealed the aqueous secondary organic aerosol formation and brownness from aged biomass-burning emissions and highlighted the importance of aqueous-phase reactions on air quality and climate. The aqueous secondary organic aerosol from aged biomass-burning emissions should be taken into account in air quality and climate models.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
Atmos. Chem. Phys., 25, 1899–1916, https://doi.org/10.5194/acp-25-1899-2025, https://doi.org/10.5194/acp-25-1899-2025, 2025
Short summary
Short summary
We studied carbonyl compounds' role in ozone pollution in the Chengdu Plain Urban Agglomeration, China. During heavy pollution in August 2019, we measured carbonyls at nine sites and analyzed their impact. Areas with higher carbonyl levels, like Chengdu, had worse ozone pollution. While their abundance matters, chemical reactions with other pollutants are the main drivers. Our findings show regional cooperation is vital to reducing ozone pollution effectively.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Junke Zhang, Yunfei Su, Chunying Chen, Wenkai Guo, Qinwen Tan, Miao Feng, Danlin Song, Tao Jiang, Qiang Chen, Yuan Li, Wei Li, Yizhi Wang, Xiaojuan Huang, Lin Han, Wanqing Wu, and Gehui Wang
Atmos. Chem. Phys., 24, 2803–2820, https://doi.org/10.5194/acp-24-2803-2024, https://doi.org/10.5194/acp-24-2803-2024, 2024
Short summary
Short summary
Typical haze events in Chengdu at the beginning of 2023 were investigated with bulk-chemical and single-particle analyses along with numerical model simulations. By integrating the obtained chemical composition, source, mixing state and numerical simulation results, we infer that Haze-1 was mainly caused by pollutants related to fossil fuel combustion, especially local mobile sources, while Haze-2 was triggered by the secondary pollutants, which mainly came from regional transmission.
Chen He, Hanxiong Che, Zier Bao, Yiliang Liu, Qing Li, Miao Hu, Jiawei Zhou, Shumin Zhang, Xiaojiang Yao, Quan Shi, Chunmao Chen, Yan Han, Lingshuo Meng, Xin Long, Fumo Yang, and Yang Chen
Atmos. Chem. Phys., 24, 1627–1639, https://doi.org/10.5194/acp-24-1627-2024, https://doi.org/10.5194/acp-24-1627-2024, 2024
Short summary
Short summary
We examined the daily evolution of high molecular-weight organic compounds with a molecular weight of up to 1000 Da in order to comprehend their behaviors in the atmosphere under actual conditions. These compounds were proven to undergo multi-generation oxidation, carboxylation, and nitrification via both day- and nighttime chemistry.
Nan Wang, Hongyue Wang, Xin Huang, Xi Chen, Yu Zou, Tao Deng, Tingyuan Li, Xiaopu Lyu, and Fumo Yang
Atmos. Chem. Phys., 24, 1559–1570, https://doi.org/10.5194/acp-24-1559-2024, https://doi.org/10.5194/acp-24-1559-2024, 2024
Short summary
Short summary
This study explores the influence of extreme-weather-induced natural processes on ozone pollution, which is often overlooked. By analyzing meteorological factors, natural emissions, chemistry pathways and atmospheric transport, we discovered that these natural processes could substantially exacerbate ozone pollution. The findings contribute to a deeper understanding of ozone pollution and offer valuable insights for controlling ozone pollution in the context of global warming.
Yufeng Chi, Yu Zhan, Kai Wang, and Hong Ye
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-76, https://doi.org/10.5194/essd-2023-76, 2023
Manuscript not accepted for further review
Short summary
Short summary
A data set of regional spatial distribution of PM2.5, SO2 and Ozone in China for 6 years from 2015 to 2020 is provided. The time resolution of the data is 1d, the spatial resolution is about 1 km, and the cross-validation R2 is about 0.9. Data sharing is on the zenodo platform. This data can be directly used to visualize the distribution of regional air pollutants, and can also be used for data analysis, ecological applications, etc.
Suding Yang, Xin Li, Limin Zeng, Xuena Yu, Ying Liu, Sihua Lu, Xiaofeng Huang, Dongmei Zhang, Haibin Xu, Shuchen Lin, Hefan Liu, Miao Feng, Danlin Song, Qinwen Tan, Jinhui Cui, Lifan Wang, Ying Chen, Wenjie Wang, Haijiong Sun, Mengdi Song, Liuwei Kong, Yi Liu, Linhui Wei, Xianwu Zhu, and Yuanhang Zhang
Atmos. Meas. Tech., 16, 501–512, https://doi.org/10.5194/amt-16-501-2023, https://doi.org/10.5194/amt-16-501-2023, 2023
Short summary
Short summary
Vertical observation of volatile organic compounds (VOCs) is essential to study the spatial distribution and evolution patterns of VOCs in the planetary boundary layer (PBL). This paper describes multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle (UAV) for near-continuous VOC vertical observation. Vertical profiles of VOCs and trace gases during the evolution of the PBL in south-western China have been successfully obtained by deploying the newly developed UAV system.
Zhier Bao, Xinyi Zhang, Qing Li, Jiawei Zhou, Guangming Shi, Li Zhou, Fumo Yang, Shaodong Xie, Dan Zhang, Chongzhi Zhai, Zhenliang Li, Chao Peng, and Yang Chen
Atmos. Chem. Phys., 23, 1147–1167, https://doi.org/10.5194/acp-23-1147-2023, https://doi.org/10.5194/acp-23-1147-2023, 2023
Short summary
Short summary
We characterised non-refractory fine particulate matter (PM2.5) during winter in the Sichuan Basin (SCB), Southwest China. The factors driving severe aerosol pollution were revealed, highlighting the importance of rapid nitrate formation and intensive biomass burning. Nitrate was primarily formed through gas-phase oxidation during daytime and aqueous-phase oxidation during nighttime. Controlling nitrate and biomass burning will benefit the mitigation of haze formation in the SCB.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Cited articles
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005, 2005.
Cardelino, C. A. and Chameides, W. L.: An Observation-Based Model for Analyzing Ozone Precursor Relationships in the Urban Atmosphere, J. Air Waste Ma., 45, 161–180, https://doi.org/10.1080/10473289.1995.10467356, 1995.
Chen, D., Zhou, L., Wang, C., Liu, H., Qiu, Y., Shi, G., Song, D., Tan, Q., and Yang, F.: Characteristics of ambient volatile organic compounds during spring O3 pollution episode in Chengdu, China, J, Environ. Sci., 114, 115–125, 2022.
Daum, P. H., Kleinman, L. I., Springston, S. R., Nunnermacker, L., Lee, Y. N., Weinstein-Lloyd, J., Zheng, J., and Berkowitz, C. M.: A comparative study of O3 formation in the Houston urban and industrial plumes during the 2000 Texas Air Quality Study, J. Geophys. Res.-Atmos., 108, 4715, https://doi.org/10.1029/2003JD003552, 2003.
Ding, A., Huang, X., and Fu, C.: Air pollution and weather interaction in East Asia, in: Oxford Research Encyclopedia of Environmental Science, https://doi.org/10.1093/acefore/9780199389414.013.536, 2017.
Emberson, L., Ashmore, M., Murray, F., Kuylenstierna, J., Percy, K., Izuta, T., Zheng, Y., Shimizu, H., Sheu, B., and Liu, C.: Impacts of air pollutants on vegetation in developing countries, Water Air Soil Poll., 130, 107–118, 2001.
Hall, S. J., Matson, P. A., and Roth, P. M.: NOx emissions from soil: implications for air quality modeling in agricultural regions, Annu. Rev. Energ. Env., 21, 311–346, 1996.
Hu, J., Zhao, T., Liu, J., Cao, L., Wang, C., Li, Y., Shi, C., Tan, C., Sun, X., and Shu, Z.: Exploring the ozone pollution over the western Sichuan Basin, Southwest China: The impact of diurnal change in mountain-plains solenoid, Sci. Total Environ., 839, 156264, https://doi.org/10.1016/j.scitotenv.2022.156264, 2022.
Huang, J., Hartmann, H., Hellén, H., Wisthaler, A., Perreca, E., Weinhold, A., Rücker, A., van Dam, N. M., Gershenzon, J., and Trumbore, S.: New perspectives on CO2, temperature, and light effects on BVOC emissions using online measurements by PTR-MS and cavity ring-down spectroscopy, Environ. Sci. Technol., 52, 13811–13823, 2018.
Itahashi, S., Hayami, H., and Uno, I.: Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia, J. Geophys. Res.-Atmos., 120, 331–358, 2015.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131–2159, 2000.
Jenkin, M. E. and Clemitshaw, K. C.: Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer, Atmos. Environ., 34, 2499–2527, 2000.
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development, Atmos. Environ., 31, 81–104, https://doi.org/10.1016/S1352-2310(96)00105-7, 1997.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
Krupa, S. V. and Kickert, R. N.: The greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation, Environ. Pollut., 61, 263–393, 1989.
Kwok, R. H., Napelenok, S. L., and Baker, K. R.: Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model, Atmos. Environ., 80, 398–407, 2013.
Lei, Y., Wu, K., Zhang, X., Kang, P., Du, Y., Yang, F., Fan, J., and Hou, J.: Role of meteorology-driven regional transport on O3 pollution over the Chengdu Plain, southwestern China, Atmos. Res., 285, 106619, https://doi.org/10.1016/j.atmosres.2023.106619, 2023.
Lelieveld, J. and Dentener, F. J.: What controls tropospheric ozone?, J. Geophys. Res.-Atmos., 105, 3531–3551, https://doi.org/10.1029/1999jd901011, 2000.
Lu, X., Zhang, L., and Shen, L.: Meteorology and Climate Influences on Tropospheric Ozone: a Review of Natural Sources, Chemistry, and Transport Patterns, Current Pollution Reports, 5, 238–260, https://doi.org/10.1007/s40726-019-00118-3, 2019.
McElroy, M. B., Salawitch, R. J., and Wofsy, S. C.: Antarctic O3: Chemical mechanisms for the spring decrease, Geophys. Res. Lett., 13, 1296–1299, 1986.
Meng, X., Jiang, J., Chen, T., Zhang, Z., Lu, B., Liu, C., Xue, L., Chen, J., Herrmann, H., and Li, X.: Chemical drivers of ozone change in extreme temperatures in eastern China, Sci. Total Environ., 874, 162424, https://doi.org/10.1016/j.scitotenv.2023.162424, 2023.
Napelenok, S., Cohan, D., Odman, M. T., and Tonse, S.: Extension and evaluation of sensitivity analysis capabilities in a photochemical model, Environ. Modell. Softw., 23, 994–999, 2008.
Potosnak, M. J., LeStourgeon, L., Pallardy, S. G., Hosman, K. P., Gu, L., Karl, T., Geron, C., and Guenther, A. B.: Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress, Atmos. Environ., 84, 314–322, 2014.
Qiao, X., Guo, H., Wang, P., Tang, Y., Ying, Q., Zhao, X., Deng, W., and Zhang, H.: Fine particulate matter and ozone pollution in the 18 cities of the Sichuan Basin in southwestern China: model performance and characteristics, Aerosol Air Qual. Res., 19, 2308–2319, 2019.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
Saunier, A., Ormeño, E., Boissard, C., Wortham, H., Temime-Roussel, B., Lecareux, C., Armengaud, A., and Fernandez, C.: Effect of mid-term drought on Quercus pubescens BVOCs' emission seasonality and their dependency on light and/or temperature, Atmos. Chem. Phys., 17, 7555–7566, https://doi.org/10.5194/acp-17-7555-2017, 2017.
Schwela, D.: Air pollution and health in urban areas, Rev. Environ. Health, 15, 13–42, 2000.
Shu, Z., Zhao, T., Liu, Y., Zhang, L., Ma, X., Kuang, X., Li, Y., Huo, Z., Ding, Q., and Sun, X.: Impact of deep basin terrain on PM2.5 distribution and its seasonality over the Sichuan Basin, Southwest China, Environ. Pollut., 300, 118944, https://doi.org/10.1016/j.envpol.2022.118944, 2022.
Wang, H., Lu, X., Seco, R., Stavrakou, T., Karl, T., Jiang, X., Gu, L., and Guenther, A. B.: Modeling Isoprene Emission Response to Drought and Heatwaves Within MEGAN Using Evapotranspiration Data and by Coupling With the Community Land Model, J. Adv. Model. Earth Sy., 14, e2022MS003174, https://doi.org/10.1029/2022MS003174, 2022.
Wang, N., Guo, H., Jiang, F., Ling, Z., and Wang, T.: Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model, Sci. Total Environ., 505, 939–951, 2015.
Wang, N., Huang, X., Xu, J., Wang, T., Tan, Z.-M., and Ding, A.: Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China, Science Advances, 8, eabl6166, https://doi.org/10.1126/sciadv.abl6166, 2022.
Wang, P., Qiao, X., and Zhang, H.: Modeling PM2.5 and O3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China, Chemosphere, 254, 126735, https://doi.org/10.1016/j.chemosphere.2020.126735, 2020.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575, 1582–1596, 2017.
Xiao, Q., Geng, G., Xue, T., Liu, S., Cai, C., He, K., and Zhang, Q.: Tracking PM2.5 and O3 pollution and the related health burden in China 2013–2020, Environ. Sci. Technol., 56, 6922–6932, 2021.
Xue, L., Wang, T., Wang, X., Blake, D. R., Gao, J., Nie, W., Gao, R., Gao, X., Xu, Z., Ding, A., Huang, Y., Lee, S., Chen, Y., Wang, S., Chai, F., Zhang, Q., and Wang, W.: On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation, Environ. Pollut., 195, 39–47, https://doi.org/10.1016/j.envpol.2014.08.005, 2014.
Zhang, Y., Sun, J., Zheng, P., Chen, T., Liu, Y., Han, G., Simpson, I. J., Wang, X., Blake, D. R., Li, Z., Yang, X., Qi, Y., Wang, Q., Wang, W., and Xue, L.: Observations of C1–C5 alkyl nitrates in the Yellow River Delta, northern China: Effects of biomass burning and oil field emissions, Sci. Total Environ., 656, 129–139, https://doi.org/10.1016/j.scitotenv.2018.11.208, 2019.
Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., and Dong, L.: Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China, Sci. Total Environ., 624, 540–557, 2018.
Zhou, Z., Tan, Q., Deng, Y., Song, D., Wu, K., Zhou, X., Huang, F., Zeng, W., and Lu, C.: Compilation of emission inventory and source profile database for volatile organic compounds: A case study for Sichuan, China, Atmos. Pollut. Res., 11, 105–116, 2020.
Zhu, J. X., Cheng, H. R., Peng, J., Zeng, P., Wang, Z. W., Lyu, X. P., and Guo, H.: O3 photochemistry on O3 episode days and non-O3 episode days in Wuhan, Central China, Atmos. Environ., 223, 117236, https://doi.org/10.1016/j.atmosenv.2019.117236, 2020.
Short summary
In the scorching August 2022 heatwave, China's Sichuan Basin saw a stark contrast in ozone (O3) levels between Chengdu and Chongqing. The regional disparities were studied considering meteorology, precursors, photochemistry, and transportation. The study highlighted the importance of tailored pollution control measures and underlined the necessity for region-specific strategies to combat O3 pollution on a regional scale.
In the scorching August 2022 heatwave, China's Sichuan Basin saw a stark contrast in ozone (O3)...
Altmetrics
Final-revised paper
Preprint