Articles | Volume 24, issue 4
https://doi.org/10.5194/acp-24-2377-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-2377-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical ozone loss and chlorine activation in the Antarctic winters of 2013–2020
Raina Roy
CORRESPONDING AUTHOR
CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
Department of Physical Oceanography, Cochin University of Science and Technology, Kochi, 682016, India
Pankaj Kumar
CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
Jayanarayanan Kuttippurath
CORRESPONDING AUTHOR
CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
Franck Lefevre
LATMOS, IPSL, Sorbonne Université, UVSQ, CNRS, 75252 Paris, France
Related authors
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Gopalakrishna Pillai Gopikrishnan, Daniel M. Westervelt, and Jayanarayanan Kuttippurath
EGUsphere, https://doi.org/10.5194/egusphere-2025-1056, https://doi.org/10.5194/egusphere-2025-1056, 2025
Short summary
Short summary
This study examines the inverse effect of aerosol surface area and particulate matter (PM) reduction on air quality and atmospheric chemistry, particularly on surface ozone levels. Aerosols act as surfaces for the uptake of hydroxyl radicals (HO2), which are essential for controlling ozone formation. Reducing aerosols and PM may enhance surface ozone formation, thus worsening air quality. However, further efforts to decrease NOx emissions could mitigate this rise in surface ozone levels.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Adam Yassin Jaziri, Benjamin Charnay, Franck Selsis, Jérémy Leconte, and Franck Lefèvre
Clim. Past, 18, 2421–2447, https://doi.org/10.5194/cp-18-2421-2022, https://doi.org/10.5194/cp-18-2421-2022, 2022
Short summary
Short summary
In the context of understanding the 3D photochemical effect on the Earth's oxygenation that happened around 2.4 Ga, we developed a 3D photochemical–climate model to investigate the possible impact of atmospheric circulation and the coupling between the climate and the dynamics of oxidation. We show that the diurnal, seasonal and transport variations do not bring significant changes compared to 1D models. Nevertheless, we highlight a temperature dependence for atmospheric photochemical losses.
Etienne Terrenoire, Didier A. Hauglustaine, Yann Cohen, Anne Cozic, Richard Valorso, Franck Lefèvre, and Sigrun Matthes
Atmos. Chem. Phys., 22, 11987–12023, https://doi.org/10.5194/acp-22-11987-2022, https://doi.org/10.5194/acp-22-11987-2022, 2022
Short summary
Short summary
Aviation NOx emissions not only have an impact on global climate by changing ozone and methane levels in the atmosphere, but also contribute to the deterioration of local air quality. The LMDZ-INCA global model is applied to re-evaluate the impact of aircraft NOx and aerosol emissions on climate. We investigate the impact of present-day and future (2050) aircraft emissions on atmospheric composition and the associated radiative forcings of climate for ozone, methane and aerosol direct forcings.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Sanhita Ghosh, Shubha Verma, Jayanarayanan Kuttippurath, and Laurent Menut
Atmos. Chem. Phys., 21, 7671–7694, https://doi.org/10.5194/acp-21-7671-2021, https://doi.org/10.5194/acp-21-7671-2021, 2021
Short summary
Short summary
Wintertime direct radiative perturbation due to black carbon (BC) aerosols was assessed over the Indo-Gangetic Plain with an efficiently modelled BC distribution. The atmospheric radiative warming due to BC was about 50–70 % larger than surface cooling. Compared to the atmosphere without BC, for which a net cooling at the top of the atmosphere was exhibited, enhanced atmospheric radiative warming by 2–3 times and a reduction in surface cooling by 10–20 % were found due to BC.
Cited articles
Angell, J. K. and Free, M.: Ground-based observations of the slowdown in ozone decline and onset of ozone increase, J. Geophys. Res., 114, D07303, https://doi.org/10.1029/2008JD010860, 2009.
Ansmann, A., Ohneiser, K., Chudnovsky, A., Knopf, D. A., Eloranta, E. W., Villanueva, D., Seifert, P., Radenz, M., Barja, B., Zamorano, F., Jimenez, C., Engelmann, R., Baars, H., Griesche, H., Hofer, J., Althausen, D., and Wandinger, U.: Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke, Atmos. Chem. Phys., 22, 11701–11726, https://doi.org/10.5194/acp-22-11701-2022, 2022.
Braathen, G: WMO Antarctic Ozone Bulletin, no. 1, 1–33, https://doi.org/10.13140/RG.2.1.1167.2802, 2015.
Braathen, G. O.: Observations of the Antarctic Ozone Hole from 2003 to 2017, EGU General Assembly, Vienna, Austria, 4–13 April 2018, EGU2018-16503, 2018.
Brönnimann, S., Coper, J. M., Rozanov, E., Fischer, A. M., Morgenstern, O., Zeng, G., Akiyoshi, H., and Yamashita, Y.: Tropical circulation and precipitation response to ozone depletion and recovery, Environ. Res. Lett., 12, 064011, https://doi.org/10.1088/1748-9326/aa7416, 2017.
Chipperfield, M. P., Bekki, S., Dhomse, S., Harris, N. R., Hassler, B., Hossaini, R., Steinbrecht, W., Thiéblemont, R., and Weber, M.: Detecting recovery of the stratospheric ozone layer, Nature, 549, 211–218, https://doi.org/10.1038/nature23681, 2017.
de Laat, A. T. J., van Weele, M., and van der A, R. J.: Onset of stratospheric ozone recovery in the Antarctic ozone hole in assimilated daily total ozone columns, J. Geophys. Res.-Atmos., 122, 11880–11899, https://doi.org/10.1002/2016JD025723, 2017.
Evtushevsky, O. M., Klekociuk, A. R., Kravchenko, V. O., Milinevsky, G. P., and Grytsai, A. V.: The influence of large amplitude planetary waves on the Antarctic ozone hole of austral spring 2017, Journal of Southern Hemisphere Earth Systems Science, 69, 57–64, https://doi.org/10.1071/ES19022, 2019.
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207–210, 1985.
Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters, J. W., Browell, E. V., Hair, J. W., Avery, M. A., McGee, T. J., Twigg, L. W., Sumnicht, G. K.,, Jucks, K. W., Margitan, J. J., Sen, B., Stachnik, R. A., Toon, G. C., Bernath, P. F., Boone, C. D., Walker, K. A., Filipiak, M. J., Harwood, R. S., Fuller, R. A., Manney, G. L., Schwartz, M. J., Daffer, W. H., Drouin, B. J., Cofield, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B. W., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., and Wagner, P. A.: Validation of Aura Microwave Limb Sounder stratospheric ozone measurements, J. Geophys. Res., 113, 15–20, https://doi.org/10.1029/2007JD008771, 2008.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017 (data available at: https://ozonewatch.gsfc.nasa.gov/, last access: 15 September 2023).
Gillett, N. P. and Thompson, D. W.: Simulation of recent southern hemisphere climate change, Science, 302, 273–275, https://doi.org/10.1126/science.1087440, 2003.
Johnson, B. J., Cullis, P., Booth, J., Petropavlovskikh, I., McConville, G., Hassler, B., Morris, G. A., Sterling, C., and Oltmans, S.: South Pole Station ozonesondes: variability and trends in the springtime Antarctic ozone hole 1986–2021, Atmos. Chem. Phys., 23, 3133–3146, https://doi.org/10.5194/acp-23-3133-2023, 2023.
Kang, S. M., Polvani, L. M., Fyfe, J. C., Son, S.-W., Sigmond, M., and Correa, G. J. P.: Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer, Geophys. Res. Lett., 40, 4054–4059, https://doi.org/10.1002/grl.50769, 2013.
Klekociuk, A., Tully, M. B., Krummel, P. B., Evtushevsky, O., Kravchenko, V., Henderson, S. I., Alexander, S. P., Querel, R. R., Nichol, S., Smale, D., Milinevsky, G. P., Grytsai, A., Fraser, P. J., Xiangdong, Z., Gies, H. P., Schofield, R., and Shanklin, J. D.: The Antarctic ozone hole during 2017, University Of Tasmania, Journal of Southern Hemisphere Earth Systems Science, 69, 29–51, https://doi.org/10.1071/ES19019, 2019.
Klekociuk, A. R., Tully, M. B., Krummel, P. B., Henderson, S. I., Smale, D., Querel, R., Nichol, S., Alexander, S. P., Fraser, P. J., and Nedoluha, G.: The Antarctic ozone hole during 2018 and 2019, Journal of Southern Hemisphere Earth Systems Science, 71, 66–91, https://doi.org/10.1071/ES20010, 2021.
Krummel, P. B., Fraser, P. J. and Derek, N.: The 2015 Antarctic ozone hole and ozone science summary: final report, Australian Government Department of the Environment, CSIRO, Australia, iv, 27 pp., http://www.environment.gov.au/protection/ozone/publications/antarctic-ozone-hole-summary-reports (last access: 12 September 2022), 2016.
Kuttippurath, J. and Nair, P. J.: The signs of Antarctic ozone hole recovery, Sci. Rep., 7, 585, https://doi.org/10.1038/s41598-017-00722-7, 2017.
Kuttippurath, J., Godin-Beekmann, S., Lefèvre, F., Santee, M. L., Froidevaux, L., and Hauchecorne, A.: Variability in Antarctic ozone loss in the last decade (2004–2013): high-resolution simulations compared to Aura MLS observations, Atmos. Chem. Phys., 15, 10385–10397, https://doi.org/10.5194/acp-15-10385-2015, 2015.
Kuttippurath, J., Kumar, P., Nair, P. J., and Pandey, P. C.: Emergence of ozone recovery evidenced by reduction in the occurrence of Antarctic ozone loss saturation, npj Climate and Atmospheric Science, 1, 42, https://doi.org/10.1038/s41612-018-0052-6, 2018.
Lefèvre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P.: Chemistry of the 1991/1992 stratospheric winter: three-dimensional model simulations, J. Geophys. Res., 99, 8183–8195, 1994 (data available at: http://cds-espri.ipsl.fr/, last access: 18 November 2023).
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L., Millán Valle, L. F., Pumphrey, H. C., Santee, M. L., Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Martinez, E., and Lay, R. R.: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 4.2x Level 2 and 3 data quality and description document, JPL D-33509 Rev. E, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, 1–174, 2020 (data available at: https://disc.gsfc.nasa.gov/, last access: 10 September 2023).
Manney, G. L., Livesey, N. J., Santee, M. L., Froidevaux, L., Lambert, A., Lawrence, Z. D., Millán, L. F., Neu, J. L., Read, W. G., Schwartz, M. J., and Fuller, R. A.: Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters, Geophys. Res. Lett., 47, e2020GL089063, https://doi.org/10.1029/2020GL089063, 2020.
Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., and Ivaniha, O.: Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica, Int. J. Remote Sens., 41, 7530–7540, https://doi.org/10.1080/2150704X.2020.1763497, 2020.
Müller, R., Tilmes, S., Konopka, P., Grooß, J.-U., and Jost, H.-J.: Impact of mixing and chemical change on ozone-tracer relations in the polar vortex, Atmos. Chem. Phys., 5, 3139–3151, https://doi.org/10.5194/acp-5-3139-2005, 2005.
Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R.: An objective determination of the polar vortex using Ertel's potential vorticity, J. Geophys. Res., 101, 9471–9478, 1996.
Pazmiño, A., Godin-Beekmann, S., Hauchecorne, A., Claud, C., Khaykin, S., Goutail, F., Wolfram, E., Salvador, J., and Quel, E.: Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring, Atmos. Chem. Phys., 18, 7557–7572, https://doi.org/10.5194/acp-18-7557-2018, 2018.
Polvani, L. M., Waugh, D. W., Correa, G. J. P., and Son, S.-W.: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere, J. Climate, 24, 795–812, 2011.
Rowland, F. S., Spencer, J. E., and Molina, M. J.: Stratospheric formation and photolysis of chlorine nitrate, J. Phys. Chem., 80, 2711–2713, 1976.
Roy, R., Kuttippurath, J., Lefèvre, F., Raj, S., and Kumar, P.: The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002, Theor. Appl. Climatol., 149, 119–130, https://doi.org/10.1007/s00704-022-04031-6, 2022.
Salby, M., Titova, E., and Deschamps, L.: Rebound of Antarctic ozone, Geophys. Res. Lett., 38, L09702, https://doi.org/10.1029/2011GL047266, 2011.
Santee, M., MacKenzie, I. A., Manney, G., Chipperfield, M., Bernath, P. F., Walker, K. A., Boone, C. D., Froidevaux, L., Livesey, N., and Waters, J. W.: A study of stratospheric chlorine partitioning based on new satellite measurements and modeling, J. Geophys. Res., 113, D12307, https://doi.org/10.1029/2007JD009057, 2008.
Shen, X., Wang, L., and Osprey, S.: The Southern Hemisphere sudden stratospheric warming of September 2019, Sci. Bull., 65, 1800–1802, https://doi.org/10.1016/j.scib.2020.06.028, 2020a.
Shen, X., Wang, L., and Osprey, S.: Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming, Geophys. Res. Lett., 47, e2020GL089343, https://doi.org/10.1029/2020GL089343, 2020b.
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999.
Solomon, S., Haskins, J., Ivy, D. J., and Min, F.: Fundamental differences between Arctic and Antarctic ozone depletion, P. Natl. Acad. Sci. USA, 111, 6220–6225, https://doi.org/10.1073/PNAS.1319307111, 2014.
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., and Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science, 252, 269–274, https://doi.org/10.1126/science.aae0061, 2016.
Stolarski, R. S. and Cicerone, R. J.: Stratospheric chlorine: A possible sink for ozone, Can. J. Chem., 52, 1610–1615, 1974.
Stone, K. A., Solomon, S., Kinnison, D. E., and Mills, M. J.: On Recent Large Antarctic Ozone Holes and Ozone Recovery Metrics, Geophys. Res. Lett., 48, e2021GL095232, https://doi.org/10.1029/2021GL095232, 2021.
Strahan, S. E. and Douglass, A. R.: Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations, Geophys. Res. Lett., 45, 382–390, https://doi.org/10.1002/2017GL074830, 2018.
Tully, M. B., Klekociuk, A. R., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Schofield, R., Shanklin, J. D., and Stone, K. A.: The Antarctic ozone hole during 2015 and 2016, Journal of Southern Hemisphere Earth Systems Science, 69, 16–28, https://doi.org/10.1071/ES19021, 2019.
Vargin, P. N., Nikiforova, M. P., and Zvyagintsev, A. M.: Variability of the Antarctic Ozone Anomaly in 2011–2018, Russ. Meteorol. Hydrol., 45, 63–73, https://doi.org/10.3103/S1068373920020016, 2020.
Wargan, K., Weir, B., Manney, G. L., Cohn, S. E., and Livesey, N. J.: The anomalous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system with MLS observations, J. Geophys. Res., 125, e2020JD033335, https://doi.org/10.1029/2020JD033335, 2020.
Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Jackman, C. H., Bishop, L., Hollandsworth Frith, S. M., DeLuisi, J., Keller, T., Oltmans, S. J., Fleming, E. L., Wuebbles, D. J., Kerr, J. B., Miller, A. J., Herman, J., McPeters, R., Nagatani, R. M., and Frederick, J. E.: Detecting the recovery of total column ozone, J. Geophys. Res.-Atmos., 105, 22201–22210, https://doi.org/10.1029/2000JD900063, 2000.
Wespes, C., Hurtmans, D., Chabrillat, S., Ronsmans, G., Clerbaux, C., and Coheur, P.-F.: Is the recovery of stratospheric O3 speeding up in the Southern Hemisphere? An evaluation from the first IASI decadal record (2008–2017), Atmos. Chem. Phys., 19, 14031–14056, https://doi.org/10.5194/acp-19-14031-2019, 2019.
Williamson, D. L. and Rasch, P. J.: Two-dimensional semi-Lagrangian transport with shape-preserving interpolation, Mon. Weather Rev., 117, 102–129, 1989.
WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, 572 pp., Geneva, 2007.
WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report, World Meteorological Organization, Geneva, Switzerland, 416 pp., 2014.
Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., Laštovička, J., Kozubek, M., Ward, W., Themens, D. R., Kristoffersen, S., and Alken, P.: September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects, Geophys. Res. Lett., 47, e2019GL086577, https://doi.org/10.1029/2019GL086577, 2020.
Yang, E.-S., Cunnold, D. M., Newchurch, M. J., Salawitch, R. J., McCormick, M. P., Russell, J. M., Zawodny, J. M., and Oltmans, S. J.: First stage of Antarctic ozone recovery, J. Geophys. Res., 113, D20308, https://doi.org/10.1029/2007JD009675, 2008.
Zuev, V. and Savelieva, E.: The cause of the strengthening of the Antarctic polar vortex during October–November periods, J. Atmos. Sol.-Terr. Phy., 190, 1–5, https://doi.org/10.1016/j.jastp.2019.04.016, 2019.
Short summary
We assess the interannual variability of ozone loss and chlorine activation in the Antarctic winters of 2013–2020. The analysis shows significant interannual variability in the Antarctic ozone during this period as compared to the previous decade (2000–2010). Dynamics and chemistry of the winters play their respective roles in the ozone loss process. The winter of 2019 is an example of favourable chemistry helping in the large loss of ozone, though the dynamical conditions were unfavourable.
We assess the interannual variability of ozone loss and chlorine activation in the Antarctic...
Altmetrics
Final-revised paper
Preprint