Articles | Volume 24, issue 3
https://doi.org/10.5194/acp-24-1919-2024
https://doi.org/10.5194/acp-24-1919-2024
Research article
 | 
13 Feb 2024
Research article |  | 13 Feb 2024

Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition

Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold

Related authors

Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024,https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024,https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
The Critical Number and Size of Precipitation Embryos to Accelerate Warm Rain Initiation
Jung-Sub Lim, Yign Noh, Hyunho Lee, and Fabian Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2636,https://doi.org/10.5194/egusphere-2024-2636, 2024
Short summary
The Impact of Aerosol on Cloud Water: A Heuristic Perspective
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1725,https://doi.org/10.5194/egusphere-2024-1725, 2024
Short summary
Microphysics regimes due to haze-cloud interactions: cloud oscillation and cloud collapse
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1693,https://doi.org/10.5194/egusphere-2024-1693, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024,https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
High ice water content in tropical mesoscale convective systems (a conceptual model)
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024,https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024,https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024,https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024,https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary

Cited articles

Ackerman, A. S., Stevens, B., Savic-Jovcic, V., Bretherton, C. S., Chlond, A., Golaz, J. C., Jiang, H., Khairoutdinov, M., Krueger, S. K., Lewellen, D. C., and Lock, A.: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer, Mon. Weather Rev., 137, 1083–1110, 2009. a
Ahlm, L., Jones, A., Stjern, C. W., Muri, H., Kravitz, B., and Kristjánsson, J. E.: Marine cloud brightening – as effective without clouds, Atmos. Chem. Phys., 17, 13071–13087, https://doi.org/10.5194/acp-17-13071-2017, 2017. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. a
Baker, M. B. and Charlson, R. J.: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer, Nature, 345, 142–145, 1990. a
Bretherton, C.: A conceptual model of the stratocumulus-trade-cumulus transition in the subtropical oceans, in: Proceedings of the 11th International Conference on Clouds and Precipitation, 17–21 August 1992, Montreal, PQ, Canada, International Commission on Clouds and Precipitation, vol. 1, 374–377, https://www.google.com/url?sa=t&rct=j&q=&esrc=s &source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjY9but3 aeEAxULxTgGHRhDBzEQFnoECA8QAQ&url=https%3A %2F%2Fwww.iamas.org%2Ficcp%2Fwp-content%2F uploads%2Fsites%2F3%2F2021%2F01%2F11th-Internation-Conference-on-Clouds-and-Precipitation-Proceedings-Vol-I.pdf&usg=AOvVaw0dh-5QnZxuc1yfjDzwZoXl&opi=89978449 (last access: 12 February 2024), 1992. a, b
Download
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Altmetrics
Final-revised paper
Preprint