Articles | Volume 24, issue 23
https://doi.org/10.5194/acp-24-13733-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-13733-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Mary C. Robinson
Department of Geosciences, Texas Tech University, Lubbock, Texas 79409, USA
Kaitlin Schueth
NOAA National Weather Service, 2579 S Loop 289, Lubbock, Texas 79423, USA
Karin Ardon-Dryer
CORRESPONDING AUTHOR
Department of Geosciences, Texas Tech University, Lubbock, Texas 79409, USA
Related authors
Karin Ardon-Dryer and Mary C. Kelley
Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022, https://doi.org/10.5194/acp-22-9161-2022, 2022
Short summary
Short summary
Changes in the particle size distribution and particulate matter concentrations during different dust events in West Texas were examined. Analysis based on different timescales showed that current common methods used to evaluate the impact of dust events on air quality will not capture the true impact of short (convective) dust events and, therefore, do not provide an insightful understanding of their impact on the environment and human health.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Luis A. Ladino, Karin Ardon-Dryer, Diana L. Pereira, Ulrike Proske, Zyanya Ramirez-Diaz, Antonia Velicu, and Zamin A. Kanji
EGUsphere, https://doi.org/10.5194/egusphere-2025-4499, https://doi.org/10.5194/egusphere-2025-4499, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
A survey and literature metadata analysis from the cloud physics community are used to investigate the state of diversity, equity and inclusion in the cloud physics research community. We show the evolution of gender contributions to cloud physics and the inclusion of scientists from the Global South. The publication analysis reveals the rate of men and women dropping out of the field is not different, however, gender balance was better achieved when women led publications compared to men.
John Garber and Karin Ardon-Dryer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4300, https://doi.org/10.5194/egusphere-2025-4300, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study aimed to develop a calibration using a multivariate linear regression for the Clarity Node S for PM1, PM2.5, and PM10. Calibrations for PM1 and PM2.5 were successfully implemented using internal temperature, relative humidity, and EDM-180 PM10. Comparison of the calibration of sensors for eight months showed improvements in detecting spikes in high PM concentrations and maintained good correlation with a reference monitor.
Karin Ardon-Dryer and Mary C. Kelley
Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022, https://doi.org/10.5194/acp-22-9161-2022, 2022
Short summary
Short summary
Changes in the particle size distribution and particulate matter concentrations during different dust events in West Texas were examined. Analysis based on different timescales showed that current common methods used to evaluate the impact of dust events on air quality will not capture the true impact of short (convective) dust events and, therefore, do not provide an insightful understanding of their impact on the environment and human health.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Karin Ardon-Dryer, Yuval Dryer, Jake N. Williams, and Nastaran Moghimi
Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, https://doi.org/10.5194/amt-13-5441-2020, 2020
Short summary
Short summary
The PurpleAir PA-II is a low-cost sensor for monitoring changes in the concentrations of particulate matter of various sizes. This study examined the behaviour of multiple PA-II units in four locations in the USA under atmospheric conditions when exposed to a variety of pollutants and different PM2.5 concentrations. The PA-II unit is a promising tool for measuring PM2.5 concentrations and identifying relative concentration changes, as long as the
PA-II PM2.5 values can be corrected.
Cited articles
Achakulwisut, P., Shen, L., and Mickley, L. J.: What controls springtime fine dust variability in the western United States? Investigating the 2002–2015 increase in fine dust in the U.S. Southwest, J. Geophys. Res., 122, 12449–12467, https://doi.org/10.1002/2017JD027208, 2017.
Achilleos, S., Wolfsona, M. J., Ferguson, S. T., Kanga, C. M., Hadjimitsis, D. G., Hadjicharalambous, G., Achilleos, C., Christodoulou, A., Nisanzti, A., Papoutsa, C., Themistocleous, K., Spyros, S., Perdikou, S., and Koutrakis, P.: Spatial variability of fine and coarse particle composition and sources in Cyprus, Atmos. Res., 169, 255–270, https://doi.org/10.1016/j.atmosres.2015.10.005, 2016.
Albuquerque-Bernalillo County: High Wind Fugitive Dust Mitigation Plan, https://www.cabq.gov/airquality/regulation-development/abq-bc-fugitive-dust-mitigation-plan-final-draft-1.pdf (last access: 25 July 2024), 2024.
Alghamdi, M. A., Almazroui, M., Shamy, M., Redal, M. A., Alkhalaf, A. K., Hussein, M. A., and Khoder, M. I.: Characterization and Elemental Composition of Atmospheric Aerosol Loads during Springtime Dust Storm in Western Saudi Arabia, Aerosol Air Qual. Res., 15, 440–453, https://doi.org/10.4209/aaqr.2014.06.0110, 2015.
Al Kheder, S. and Al Kandari, A.: The impact of dust on Kuwait International Airport operations: a case study, Int. J. Environ. Sci. Te., 17, 3467–3474, https://doi.org/10.1007/s13762-020-02710-3, 2020.
Arcusa, S. H., McKay, N. P., Carrillo, C. M., and Ault, T. R.: Dust-drought nexus in the southwestern United States: A proxy-model comparison approach, Paleoceanogr. Paleoclimatol., 35, e2020PA004046, https://doi.org/10.1029/2020PA004046, 2020.
Ardon-Dryer, K. and Kelley, M. C.: Particle size distribution and particulate matter concentrations during synoptic and convective dust events in West Texas, Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022, 2022.
Ardon-Dryer, K. and Levin, Z.: Ground-based measurements of immersion freezing in the eastern Mediterranean, Atmos. Chem. Phys., 14, 5217–5231, https://doi.org/10.5194/acp-14-5217-2014, 2014.
Ardon-Dryer, K., Chmielewski, V., Burning E., and Xueting X.: Changes of Electric Field, Aerosol, and Wind Covariance in Different Blowing Dust Days in West Texas, Aeolian Res., 54, 100762, https://doi.org/10.1016/j.aeolia.2021.100762, 2022a.
Ardon-Dryer, K., Kelley, M. C., Xueting, X., and Dryer, Y.: The Aerosol Research Observation Station (AEROS), Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, 2022b.
Ardon-Dryer, K., Clifford, K. R., and Hand, J. L.: Dust under the radar: Rethinking how to evaluate the impacts of dust events on air quality in the United States, GeoHealth, 7, e2023GH000953, https://doi.org/10.1029/2023GH000953, 2023a.
Ardon-Dryer, K., Gill, T. E., and Tong, D. Q.: When a dust storm is not a dust storm: Reliability of dust records from the Storm Events Database and implications for geohealth applications, GeoHealth, 7, e2022GH000699, https://doi.org/10.1029/2022GH000699, 2023b.
Arhami, M., Hosseini, V., Shahne, M. Z., Bigdeli, M., Lai, A., and Shauer, J. J.: Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran, Atmos. Environ., 153, 70–82, https://doi.org/10.1016/j.atmosenv.2016.12.046, 2017.
ASOS (Automatic Surface Observation System) User's Guide: https://apps.dtic.mil/sti/pdfs/ADA354716.pdf (last access: 11 January 2023), 1998.
Bach, A. J., Brazel, A. J., and Lancaster N.: Temporal and spatial aspects of blowing dust in the Mojave and Colorado deserts of Southern California, 1973–1994. Analytic Serial, Phys. Geogr., 17, 329–353, https://doi.org/10.1080/02723646.1996.10642589, 1996.
BAM 1022: Met One Instruments: BAM 1022 Beta Attenuation Mass Monitor, https://metone.com/products/bam-1022/, last access: 25 July 2024.
Blaylock, B. K.: GOES-2-go: Download and display GOES-East and GOES-west data, Github [code], https://github.com/blaylockbk/goes2go, 2022.
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C., Smirnova, T. G., Olson, J. B., James, E., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Minikan, G. S.: A North American hourly assimilation and model forecast cycle: The rapid refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2016.
Birinci, E., Özdemir, E. T., and Deniz, A.: An investigation of the effects of sand and dust storms in the North East Sahara Desert on Turkish airports and PM10 values: 7 and 8 April, 2013 events, Environ. Monit. Assess., 195, 708, https://doi.org/10.1007/s10661-023-11288-5, 2023.
Bogan, M., Al, B., Kul, S., Zengin, S., Oktay, M., Sabak, M., Gumusboga, H., and Bayram, H.: The effects of desert dust storms, air pollution, and temperature on morbidity due to spontaneous abortions and toxemia of pregnancy: 5 year analysis, Int. J. Biometeorol., 65, 1733–1739, https://doi.org/10.1007/s00484-021-02127-8, 2021.
Chen, L. W. A., Tropp, R. J., Li, W. W., Zhu, D., Chow, J. C., Watson, J. G., and Zielinska, B.: Aerosol and Air Toxics Exposure in El Paso, Texas: A Pilot Study, Aerosol Air Qual. Res., 12, 169–179, https://doi.org/10.4209/aaqr.2011.10.0169, 2012.
Claiborn, C. S., Finn, D., Larson, T. V., and Koenig, J. Q.: Windblown Dust Contributes to High PM2.5 Concentrations, J. Air Waste Manage., 50, 1440–1445, https://doi.org/10.1080/10473289.2000.10464179, 2000.
Craig, K., Erdakos, G., Chang, S. Y., and Baringer, L.: Air quality and source apportionment modeling of year 2017 ozone episodes in Albuquerque/Bernalillo County, New Mexico, J. Air Waste Manage., 70, 1101–1120, 2020.
Doggett IV, A. L., Gill, T. E., Peterson, R. E., Bory, A. J.-M., and Biscaye, P. E.: Meteorological characteristics of a severe wind and dust emission event, Southwestern, USA, 6–7 April 2001, 21st AMS Conference on Severe Local Storms, August, American Meteorological Society, Boston, MA, San Antonio, TX, 2002.
Eagar, J., Herckes, P., and Hartnett, H.: The characterization of haboobs and the deposition of dust in Tempe, Arizona from 2005 to 2014, Aeolian Res., 24, 81–91, https://doi.org/10.1016/j.aeolia.2016.11.004, 2017.
EPA: NAAQS Table, https://www.epa.gov/criteria-air-pollutants/naaqs-table, last access: 30 December 2023.
EPA: Sampling Methods for PM2.5 Speciation parameters, https://aqs.epa.gov/aqsweb/documents/codetables/methods_speciation.html, last access: 25 July 2024.
Evan, A. T.: Downslope Winds and Dust Storms in the Salton Basin, Mon. Weather Rev., 147, 2387–2402, https://doi.org/10.1175/MWR-D-18-0357.1, 2019.
FAA: Air traffic organization policy JO 7900.5E, https://www.faa.gov/documentLibrary/media/Order/Order_JO_7900.5E.pdf, last access: 10 May 2021.
Fan, H., Zhao, C., Yang, Y., and Yang, X.: Spatio-Temporal Variations of the PM PM10 Ratios and Its Application to Air Pollution Type Classification in China, Front. Environ. Sci., 9, 692440, https://doi.org/10.3389/fenvs.2021.692440, 2021.
Fuell, K. K., Guyer, B. J., Kann, D., Molthan, A. L., and Elmer, N.: Next generation satellite RGB dust imagery leads to operational changes at NWS Albuquerque, J. Operational Meteor., 4, 75–91, https://doi.org/10.15191/nwajom.2016.0406, 2016.
Gaffney, J. S., Marley, N. A., Martin, R. S., Dixon, R. W., Reyes, L. G., and Popp, C. J.: Potential Air Quality Effects of Using Ethanol–Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico, Environ. Sci. Technol., 31, 3053–3061, https://doi.org/10.1021/es9610388, 1997.
Gorris, M. E., Ardon-Dryer, K., Campuzano, A., Castañón-Olivares, L. R., Gill, T. E., Greene, A., Hung, C.-Y., Kaufeld KA., Lacy, M., and Sánchez-Paredes, E.: Advocating for coccidioidomycosis as a nationally reportable disease in the United States and encouraging disease surveillance across North and South America, J. Fungi, 9, 83, https://doi.org/10.3390/jof9010083, 2023.
Goudarzi, G., Daryanoosh, S. M., Gidini, H., Hopke, P. K., Sicard, P., De Marco, A., Rad, H. D., Harbizadeh, A., Jahedi, F., Mohammadi, M. J., Savari, J., Sadeghi, S., Kaabi, Z., and Omidi Khaniabadi, O.: Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah, J. Public Health, 148, 109–116, https://doi.org/10.1016/j.puhe.2017.03.009, 2017.
Guan, Q., Yang, J., Zhao, S., Pan, B., Liu, C., Zhang, D., and Wu, T.: Climatological analysis of dust storms in the area surrounding the Tengger Desert during 1960–2007, Clim. Dynam., 45, 903–913, https://doi.org/10.1007/s00382-014-2321-3, 2015.
Hagen, L. J. and Woodruff, N. P.: Air Pollution from Dustorms in the Great Plains, Atmos. Environ., 7, 323–332, 1973.
Hahnenberger, M., and Nicoll, K.: Meteorological Characteristics of Dust Storm Events in the Eastern Great Basin of Utah, U.S.A., Atmos. Environ., 60, 601–612, https://doi.org/10.1016/j.atmosenv.2012.06.029, 2012.
Helmus, J. J. and Collis, S. M.: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language, United States, J. Open Res. Softw., 4, https://doi.org/10.5334/jors.119, 2016.
Hennen, M., Chappell, A., Edwards, B. L., Faist, A. M., Kandakji, T., Baddock, M. C., Wheeler, B., Tyree, G., Treminio, R., and Webb, N. P.: A North American dust emission climatology (2001–2020) calibrated to dust point sources from satellite observations, Aeolian Res., 54, 100766, https://doi.org/10.1016/j.aeolia.2021.100766, 2022.
Herrera-Molina, E., Gill, T. E., Ibarra-Mejia, G., and Jeon, S.: Associations between dust exposure and hospitalizations in El Paso, Texas, USA, Atmosphere-Basel, 12, 1413, https://doi.org/10.3390/atmos12111413, 2021.
Herrera-Molina, E., Gill, T. E., Ibarra-Mejia, G., Jeon, S., and Ardon-Dryer, K.: Associations Between Dust Exposure and Hospitalizations in a dust-prone city, Lubbock, Texas, USA, Air Qual. Atmos. Hlth., 17, 1091–1105, https://doi.org/10.1007/s11869-023-01489-9, 2024.
Huang, H., Qian, Y., Liu, Y., He, C., Zheng, J., Zhang, Z., and Gkikas, A.: Where does the dust deposited over the Sierra Nevada snow come from?, Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, 2022.
Huang, Y., Gong, X., Liu, L., Luo, L., Leng, S., and Lin, Y.: Maternal exposure to metal components of PM2.5 and low birth weight in New Mexico,USA, Environ. Sci. Pollut. R., 30, 98526–98535, https://doi.org/10.1007/s11356-023-29291-1, 2023.
Hyde, P., Alex Mahalov, A., and Li, J.: Simulating the meteorology and PM10 concentrations in Arizona dust storms using the Weather Research and Forecasting model with Chemistry (Wrf-Chem), J. Air Waste Manage., 68, 177–195, https://doi.org/10.1080/10962247.2017.1357662, 2018.
Iowa Mesonet: Iowa Environmental Mesonet (IEM) ASOS-AWOS-METAR Data, Iowa State University [data set], https://www.mesonet.agron.iastate.edu/request/download.phtml?network=TX_ASOS (last access: 30 December 2023), 2023.
Jaafari, J., Naddafi, K., Yunesian, M., Nabizadeh, R., Hassanvand, M. S., Ghozikali, M. G., Nazmara, S., Shamsollahi, H. R., and Yaghmaeian, K.: Study of PM10, PM2.5, and PM1 levels in during dust storms and local air pollution events in urban and rural sites in Tehran, Hum. Ecol. Risk Assess., 24, 482–493, https://doi.org/10.1080/10807039.2017.1389608, 2018.
Joshi, J. R.: Quantifying the impact of cropland wind erosion on air quality: A high-resolution modelling case study of an Arizona dust storm, Atmos. Environ., 263, 118658, https://doi.org/10.1016/j.atmosenv.2021.118658, 2021.
Jugder, D., Shinoda, M., Kimura, R., Batbold, A., and Amarjargal, D.: Quantitative analysis on windblown dust concentrations of PM10 (PM2.5) during dust events in Mongolia, Aeolian Res., 14, 3–13, https://doi.org/10.1016/j.aeolia.2014.04.005, 2014.
Kandakji, T., Gill, T. E., and Lee, J. A.: Identifying and characterizing dust point sources in the southwestern United States using remote sensing and GIS, Geomorphology, 353, 107019, https://doi.org/10.1016/j.geomorph.2019.107019, 2020.
Karami, S., Ranjbar, A., Mohebalhojeh, A. R., and Moradi, M.: A rare case of haboob in Tehran: Observational and Numerical study, Atmos. Res., 185, 169–185, https://doi.org/10.1016/j.atmosres.2016.10.010, 2017.
Karle, N. N., Mahmud, S., Sakai, R. K., Fitzgerald, R. M., Morris, V. R., and Stockwell, W. R.: Investigation of the Successive Ozone Episodes in the El Paso–Juarez Region in the Summer of 2017, Atmosphere-Basel, 11, 532, https://doi.org/10.3390/atmos11050532, 2020.
Kavouras, I. G., DuBois, D. W., Nikolich, G., and Etyemezian, V.: Monitoring, Source Identification and Health Risks of Air Toxics in Albuquerque, New Mexico, U.S.A., Aerosol Air Qual. Res., 15, 556–571, https://doi.org/10.4209/aaqr.2014.04.0075,2020.
Kelley, M. C. and Ardon-Dryer, K.: Analyzing Two Decades of Dust Events on the Southern Great Plains Region of West Texas, Atmos. Pollut. Res., 12, 101091, https://doi.org/10.1016/j.apr.2021.101091, 2021.
Kelley, M. C., Brown, M. M., Fedler, C. B., and Ardon-Dryer, K.: Long-term measurements of PM2.5 concentrations in Lubbock, Texas, Aerosol Air Qual. Res., 20, 1306–1318, https://doi.org/10.4209/aaqr.2019.09.0469, 2020.
Kim, D., Chin, M., Kemp, E. M., Tao, Z., Peters-Lidard, C. D., and Ginoux, P.: Development of high-resolution dynamic dust source function – A case study with a strong dust storm in a regional model, Atmos. Environ., 159, 11–25, https://doi.org/10.1016/j.atmosenv.2017.03.045, 2017.
Krasnov, H., Kloog, I., Friger, M., and Katra, I.: The Spatio-Temporal Distribution of Particulate Matter during Natural Dust Episodes at an Urban Scale, PLoS One, 11, e0160800, https://doi.org/10.1371/journal.pone.0160800, 2016.
Lader, G., Raman, A., Davis, J. T., and Waters, K.: Blowing dust and dust storms: one of Arizona's most underrated weather hazards, NOAA Tech. Memor. NWS-WR-290, https://www.weather.gov/media/wrh/online_publications/TMs/TM-290.pdf (10 August 2023), 2016.
Lee, J., Gill, T., Mulligan, K., Acosta, M., and Perez, A.: Land use/land cover and point sources of the 15 December 2003 dust storm in southwestern North America, Geomorphology, 105, 18–27, https://doi.org/10.1016/j.geomorph.2007.12.016, 2009.
Lee, J., Baddock, M., Mbuh, M., and Gill, T.: Geomorphic and land cover characteristics of Aeolian dust storces in West Texas and eastern New Mexico, USA, Aeolian Res., 3, 459–466, https://doi.org/10.1016/j.aeolia.2011.08.001, 2012.
Lee, J. A. and Tchakerian, V. P.: Magnitude and Frequency of Blowing Dust on the Southern High Plains of the United States, 1947–1989, Ann. Am. Assoc. Geogr., 85, 684–693, https://doi.org/10.1111/j.1467-8306.1995.tb01820.x, 1995.
Lei, H., Wang, J. X. L., Tong, D. Q., and Lee, P.: Merged dust climatology in Phoenix, Arizona based on satellite and station data, Clim. Dynam., 47, 2785–2799, https://doi.org/10.1007/s00382-016-2997-7, 2016.
Li, J., Kandakji, T., Lee, J. A., Tatarko, J., Blackwell, J., Gill, T. E., and Collins, J. D.: Blowing Dust and Highway Safety in the Southwestern United States: Characteristics of Dust Emission “Hotspots” and Management Implications, Sci. Total Environ., 621, 1023–1032, https://doi.org/10.1016/j.scitotenv.2017.10.124, 2018.
Li, W.-W., Cardenas, N., Walton, J., Trujillo, D., and Morales, H.: PM Source Identification at Sunland Park, New Mexico, Using a Simple Heuristic Metrological and Chemical Analysis, J. Air Waste Manage., 55, 352–364, https://doi.org/10.1080/10473289.2005.10464623, 2005.
Malaguti, A., Mircea, M., La Torretta, T. M., Telloli, C., Petralia, E., Stracquadanio, M., and Berico, M.: Chemical Composition of Fine and Coarse Aerosol Particles in the Central Mediterranean Area during Dust and Non-Dust Conditions, Aerosol Air Qual. Res., 15, 410–425, https://doi.org/10.4209/aaqr.2014.08.0172, 2018.
Malig, B. J. and Ostro, B. D.: Coarse particles and mortality: evidence from a multi-city study in California, J. Occup. Environ. Med., 66, 832–839, https://doi.org/10.1136/oem.2008.045393, 2009.
Mamouri, R.-E., Ansmann, A., Nisantzi, A., Solomos, S., Kallos, G., and Hadjimitsis, D. G.: Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region, Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, 2016.
May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S. C., and Marsh, P. T.: MetPy: A meteorological python library for data analysis and visualization [Software], B. Am. Meteorol. Soc., 103, E2273–E2284, https://doi.org/10.1175/BAMS-D-21-0125.1, 2022.
Middleton, N., Tozer, P., and Tozer, B.: Sand and dust storms: underrated natural hazards, Disasters, 43, 390–409, https://doi.org/10.1111/disa.12320, 2019.
Milford, C., Cuevas, E., Marrero, C. L., Bustos, J. J., Gallo, V., Rodríguez, S., Romero-Campos, P. M., and Torres, C.: Impacts of Desert Dust Outbreaks on Air Quality in Urban Areas, Atmosphere-Basel, 11, 23, https://doi.org/10.3390/atmos11010023, 2020.
Mu, H., Otani, S., Shinoda, M., Yokoyama, Y., Onishi, K., Hosoda, T., Okamoto, M., and Kurozawa, Y.: Long-Term Effects of Livestock Loss Caused by Dust Storm on Mongolian Inhabitants: A Survey 1 Year after the Dust Storm, Yonago Acta Med., 56, 39–42, 2013.
Natsagdorj, L., Jugder, D., Chung, Y. S.: Analysis of dust storms observed in Mongolia during 1937–1999, Atmos. Environ., 37, 1401–1411, https://doi.org/10.1016/S1352-2310(02)01023-3, 2003.
New Mexico Environmental Department: Current Air Quality, State of New Mexico [data set], https://aqi.air.env.nm.gov/ (last access: 5 January 2023), 2023.
Nickling, W. G. and Brazel, A. J.: Temporal and spatial characteristics of Arizona dust storms (1965–1980), J. Climatol., 4, 645–660, https://doi.org/10.1002/joc.3370040608, 1984.
Nicoll, K., Hahnenberger, M., and Goldstein, H. L.: “Dust in the wind” from source-to-sink: analysis of the 14–15 April 2015 storm in Utah, Aeolian Res., 46, 100532, https://doi.org/10.1016/j.aeolia.2019.06.002, 2020.
Novlan, D. J., Hardiman, M., and Gill, T. E.: A synoptic climatology of blowing dust events in El Paso, Texas from 1932–2005, 16th Conference on Applied Climatology, Am. Meteorol. Soc., San Antonio, TX, https://www.weather.gov/media/epz/research/elp07-2.pdf (last access: 10 August 2023), 2007.
Orlovsky, L., Orlovsky, N., and Durdyev, A.: Dust storms in Turkmenistan, J. Arid Environ., 60, 83–97, https://doi.org/10.1016/j.jaridenv.2004.02.008, 2005.
Park, S. H., Gong, S. L., Zhao, T. L., Vet, R. J., Bouchet, V. S., Gong, W., Makar, P. A., Moran, M. D., Stroud, C., and Zhang, J.: Simulation of entrainment and transport of dust particles within North America in April 2001 (“Red Dust Episode”), J. Geophys. Res.-Atmos., 112, D20209, https://doi.org/10.1029/2007JD008443, 2007.
Park, S. H., Gong, S. L., Gong, W., Makar, P. A., Moran, M. D., Stroud, C. A., and Zhang, J.: Sensitivity of surface characteristics on the simulation of windblown dust source in North America, Atmos. Environ., 43, 3122–3129, 2009.
Pérez, L., Tobias, A., Querol, X., Kunzli, N., Pey, J., Alastuey, A., Viana, M., Valero, N., Gonzalez-Cabre, M., and Sunyer, J.: Coarse particles from Saharan dust and daily mortality, Epidemiology, 19, 800–807, https://doi.org/10.1097/ede.0b013e31818131cf, 2008.
Raman, A., Arellano Jr., A., and Brost, J.: Revisiting haboobs in the southwestern United States: An observational case study of the 5 July 2011 Phoenix dust storm, Atmos. Environ., 89, 179–188, https://doi.org/10.1016/j.atmosenv.2014.02.026, 2014.
Reynolds, R. L., Munson, S. M., Fernandez, D., Goldstein, H. L., and Neff, J. C.: Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States, Aeolian Res., 23, 21–35, https://doi.org/10.1016/j.aeolia.2021.100766, 2016.
Rivera Rivera, N. I., Gill, T. E., Gebhart, K. A., Hand, J. L., Bleiwess, M. P., and Fitzgerald, R. M.: Wind modeling of Chihuahuan Desert, Atmos. Environ., 43, 347–354, https://doi.org/10.1016/j.atmosenv.2008.09.069, 2009.
Robinson, M. C. and Ardon-Dryer, K.: Characterization of 21 Years of Dust Events Across Four West Texas Regions, Aeolian Res., 67–69, 100930, https://doi.org/10.1016/j.aeolia.2024.100930, 2024.
Sandhu, T., Kelley, M., Rawlins, E., and Ardon-Dryer, K.: Identification of dust events in the greater Phoenix area, Atmos. Pollut. Res., 15, 102275, https://doi.org/10.1016/j.apr.2024.102275, 2024.
Schweitzer, M., Calzadilla, A., Salamo, O., Sharifi, A., Kumar, N., Holt, G., Campos, M., and Mirsaeidi, M.: Lung health in era of climate change and dust storms, Environ. Res., 163, 36–42, https://doi.org/10.1016/j.envres.2018.02.001, 2018.
Shao, J. and Mao, J.: Dust particle size distributions during spring in Yinchuan, China, Adv. Meteorol., 2016, 6940502, https://doi.org/10.1155/2016/6940502, 2016.
Sorribas, M., Adame, J. A., Andrews, E., and Yela, M.: An anomalous African dust event and its impact on aerosol radiative forcing on the Southwest Atlantic coast of Europe in February 2016, Sci. Total Environ., 583, 269–279, https://doi.org/10.1016/j.scitotenv.2017.01.064, 2017.
Stout, J. E.: Dust and environment in the southern high Plains of North America, J. Arid Environ., 47, 425–441, https://doi.org/10.1006/jare.2000.0732, 2001.
Stout, J. E.: Diurnal patterns of blowing dust on the Llano Estacado, J. Arid Environ., 122, 85–92, https://doi.org/10.1016/j.jaridenv.2015.06.013, 2015.
Stout, J. E. and Arimoto, R.: Threshold wind velocities for sand movement in the Mescalero Sands of Southeastern New Mexico, J. Arid Environ., 74, 1456–1460, https://doi.org/10.1016/j.jaridenv.2010.05.011, 2010.
Sugimoto, N., Shimizu, A., Matsui, I., and Nishikawa, M.: A method for estimating the fraction of mineral dust in particulate matter using PM2.5-to-PM10 ratios, Particuology, 28, 114–120, https://doi.org/10.1016/j.partic.2015.09.005, 2016.
T640: Teledyne API: Model T640 PM Mass Monitor, https://www.teledyne-api.com/prod/Downloads/SAL000090E%20-%20T640.pdf, last access: 25 July 2024.
TCEQ (Texas Commission on Environmental Quality): Air Quality and Monitoring, https://www.tceq.texas.gov/cgi-bin/compliance/monops/monthly_summary.pl?cams=1028 (last access: 30 December 2023), 2023.
Tong, D. Q., Dan, M., Wang, T., and Lee, P.: Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring, Atmos. Chem. Phys., 12, 5189–5205, https://doi.org/10.5194/acp-12-5189-2012, 2012.
Tong, D. Q., Gorris, M. E., Gill, T. E., Ardon-Dryer, K., Wang, J., and Ren, L.: Dust storms, Valley fever, and public awareness, GeoHealth, 6, e2022GH000642, https://doi.org/10.1029/2022GH000642, 2022.
Tong, D., Feng, I., Gill, T. E., Shepenski, K., and Wang, J.: How Many People Were Killed by Windblown Dust Events in the United States?, B. Am. Meteorol. Soc., 104, 1067–1084, https://doi.org/10.1175/BAMS-D-22-0186.1, 2023.
Toure, N. O., Gueye, N. R.-D., Diokhane, A. M., Jenkins, G. S., Li, M., Drame, M. S., Coker, K. R., and Thiam, K.: Observed and modeled seasonal air quality and respiratory health in Senegal during 2015 and 2016, GeoHealth, 3, 423–442, https://doi.org/10.1029/2019GH000214, 2019.
Van Pelt, R. S., Shekhter, E. G., Barnes, M. A. W., Duke, S. E., Gill, T. E., and Pannell, K. H.: Spatial and temporal patterns of heavy metal deposition resulting from a smelter in El Paso, Texas, J. Geochem. Explor., 210, 1–8, https://doi.org/10.1016/j.gexplo.2019.106414, 2020.
Vukovic, A., Vujadinovic, M., Pejanovic, G., Andric, J., Kumjian, M. R., Djurdjevic, V., Dacic, M., Prasad, A. K., El-Askary, H. M., Paris, B. C., Petkovic, S., Nickovic, S., and Sprigg, W. A.: Numerical simulation of “an American haboob”, Atmos. Chem. Phys., 14, 3211–3230, https://doi.org/10.5194/acp-14-3211-2014, 2014.
Wang, S., Wang, J., Zhou, Z., and Shang, K.: Regional characteristics of three kinds of dust storm events in China, Atmos. Environ., 39, 509–520, https://doi.org/10.1016/j.atmosenv.2004.09.033, 2005.
White, J. R., Balling, R. C., and Cerveny, R. S.: Trajectory analysis of central Sonoran Desert dust storms, J. Arid Environ., 219, 105077, https://doi.org/10.1016/j.jaridenv.2023.105077, 2023.
WHO (World Health Organization): Global air quality guidelines, https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf, last access: 30 December 2023.
WMO (World Meteorological Organization): WMO Technical Regulations Annex II Manual on Codes International Codes, I.1, https://community.wmo.int/en/activity-areas/wis/volume-i1 (last access: 10 August 2023) 2019.
Yin, D., Nickovic, S., Barbaris, B., Chandy, B., and Sprigg, W. A.: Modeling windblown desert dust in the southwestern United States for public health warning: a case study, Atmos. Environ., 39, 6243–6254, https://doi.org/10.1016/j.aeolia.2024.100930, 2005.
Yu, H. L. and Wang, C. H.: Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei, Atmos. Environ., 44, 3053–3065, https://doi.org/10.1016/j.atmosenv.2010.04.030, 2010.
Zanobetti, A. and Schwartz, J.: The effect of fine and coarse particulate air pollution on mortality: a national analysis, Environ. Health Persp., 117, 898–903, https://doi.org/10.1289/ehp.0800108, 2009.
Zobeck, T. M. and VanPelt, R. S.: Wind induced dust generation and transport mechanics on a bare agriculture field, J. Hazard. Mater., 132, 26–38, https://doi.org/10.1016/j.jhazmat.2005.11.090, 2006.
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze...
Altmetrics
Final-revised paper
Preprint