Articles | Volume 24, issue 23
https://doi.org/10.5194/acp-24-13587-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-13587-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
Bowen Zhang
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Dong Zhang
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Zhe Dong
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Xinshuai Song
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Ruiqin Zhang
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Xiao Li
CORRESPONDING AUTHOR
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Related authors
No articles found.
Qixiang Xu, Zilin Jin, Qi Ying, Ke Wang, Fangcheng Su, Ruiqin Zhang, and Michael J. Kleeman
Atmos. Chem. Phys., 25, 9431–9449, https://doi.org/10.5194/acp-25-9431-2025, https://doi.org/10.5194/acp-25-9431-2025, 2025
Short summary
Short summary
This paper introduces a novel approach for improving the computational efficiency and scalability of source-oriented chemical mechanisms by simplifying the representation of reactions involving source-tagged species and implementing a source-oriented Euler backward iterative (EBI) solver. These advancements reduce simulation times by up to 74 % while maintaining accuracy, offering significant practical benefits for long-term source apportionment studies.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
Atmos. Chem. Phys., 25, 6943–6955, https://doi.org/10.5194/acp-25-6943-2025, https://doi.org/10.5194/acp-25-6943-2025, 2025
Short summary
Short summary
Analyzing 12-year Zhengzhou data revealed post-2019 crustal material rebound caused by soil dust resuspension, elevating particle pH. Similar coarse particle increases are observed across cities of the North China Plain. Long-term particle acidity evolution in this region requires an integrated assessment of interactions among acidic precursors, ammonia, and crustal components.
Shijie Yu, Hongyu Liu, Hui Wang, Fangcheng Su, Beibei Wang, Minghao Yuan, Kunao Song, Zixian Wang, Daoqing Xu, and Ruiqin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4178, https://doi.org/10.5194/egusphere-2024-4178, 2025
Preprint archived
Short summary
Short summary
This study investigates O3 pollution in Zhengzhou. The results show that traffic and industrial emissions are the main sources of O3 and its precursors. The study highlights the significant impact of local emissions and the role of atmospheric free radicals in ozone formation. Reducing emissions of aromatics and alkenes can effectively reduce ozone pollution. These findings stress the importance of controlling traffic and industrial sources to mitigate O3 pollution.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Shijie Yu, Shenbo Wang, Ruixin Xu, Dong Zhang, Meng Zhang, Fangcheng Su, Xuan Lu, Xiao Li, Ruiqin Zhang, and Lingling Wang
Atmos. Chem. Phys., 22, 14859–14878, https://doi.org/10.5194/acp-22-14859-2022, https://doi.org/10.5194/acp-22-14859-2022, 2022
Short summary
Short summary
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban site in Zhengzhou, China. The research of concentrations, source apportionment, and atmospheric environmental implications clearly elucidated the differences in major reactants observed in different seasons and years. Therefore, the control strategy should focus on key species and sources among interannual and seasonal variations. The results can provide references to develop control strategies.
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
Cited articles
An, J., Zhu, B., Wang, H., Li, Y., Lin, X., and Yang, H.: Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China, Atmos. Environ., 97, 206–214, https://doi.org/10.1016/j.atmosenv.2014.08.021, 2014.
Bai, L., Lu, X., Yin, S., Zhang, H., Ma, S., Wang, C., Li, Y., and Zhang, R.: A recent emission inventory of multiple air pollutant, PM2.5 chemical species and its spatial-temporal characteristics in central China, J. Clean. Prod., 269, 122114, https://doi.org/10.1016/j.jclepro.2020.122114, 2020.
Buzcu, B. and Fraser, M. P.: Source identification and apportionment of volatile organic compounds in Houston, TX, Atmos. Environ., 40, 2385–2400, https://doi.org/10.1016/j.atmosenv.2005.12.020, 2006.
CCDCP: National epidemic of novel coronavirus infections, Chinese Center for Disease Control and Prevention, https://www.chinacdc.cn/jkyj/crb2/yl/xxgzbdgr/xggrqk/202409/t20240906_297054.html, last access: 18 November 2023.
Conner, T. L., Lonneman, W. A., and Seila, R. L.: Transportation-related volatile hydrocarbon source profiles measured in atlanta, J. Air Waste Manage. Assoc., 45, 383–394, https://doi.org/10.1080/10473289.1995.10467370, 1995.
Cui, L., Wu, D., Wang, S., Xu, Q., Hu, R., and Hao, J.: Measurement report: Ambient volatile organic compound (VOC) pollution in urban Beijing: characteristics, sources, and implications for pollution control, Atmos. Chem. Phys., 22, 11931–11944, https://doi.org/10.5194/acp-22-11931-2022, 2022.
Derwent, R. G., Jenkin, M. E., Utembe, S. R., Shallcross, D. E., Murrells, T. P., and Passant, N. R.: Secondary organic aerosol formation from a large number of reactive man-made organic compounds, Sci. Total Environ., 408, 3374–3381, https://doi.org/10.1016/j.scitotenv.2010.04.013, 2010.
Duan, S., Jiang, N., Yang, L., and Zhang, R.: Transport Pathways and Potential Sources of PM2.5 During the Winter in Zhengzhou, Environm. Sci., 40, 86–93, https://doi.org/10.13227/j.hjkx.201805187, 2019.
Gao, J., Zhang, J., Li, H., Li, L., Xu, L., Zhang, Y., Wang, Z., Wang, X., Zhang, W., Chen, Y., Cheng, X., Zhang, H., Peng, L., Chai, F., and Wei, Y.: Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account – A case study in a typical urban area in Beijing, Sci. Total Environ., 628–629, 791–804, https://doi.org/10.1016/j.scitotenv.2018.01.175, 2018.
Guan, Y., Liu, X., Zheng, Z., Dai, Y., Du, G., Han, J., Hou, L. A., and Duan, E.: Summer O3 pollution cycle characteristics and VOCs sources in a central city of Beijing-Tianjin-Hebei area, China, Environ. Pollut., 323, 121293, https://doi.org/10.1016/j.envpol.2023.121293, 2023.
Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K., Slowik, J., Platt, S., Canonaco, F., Zotter, P., Wolf, R., Pieber S., Bruns, E., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnellekreis, J., Zimmermann, R., An, Z., Szidat, S., and Baltensperger, U.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–22, https://doi.org/10.1038/nature13774, 2014.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Deng, Y., Zhai, R., and Wang, Z.: VOC characteristics, chemical reactivity and sources in urban Wuhan, central China, Atmos. Environ., 224, 117340, https://doi.org/10.1016/j.atmosenv.2020.117340, 2020.
Jensen, A., Liu, Z., Tan, W., Dix, B., Chen, T., Koss, A., Zhu, L., Li, L., and de Gouw, J.: Measurements of volatile organic compounds during the COVID-19 lockdown in Changzhou, China, Geophys. Res. Lett., 48, e2021GL095560, https://doi.org/10.1029/2021GL095560, 2021.
Jiang, N., Hao, X., Hao, Q., Wei, Y., Zhang, Y., Lyu, Z., and Zhang, R.: Changes in secondary inorganic ions in PM2.5 at different pollution stages before and after COVID-19 control, Environm. Sci., 44, 2430–2440, https://doi.org/10.13227/j.hjkx.202206170, 2023.
Kumar, A., Singh, D., Kumar, K., Singh, B. B., and Jain, V. K.: Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment, Sci. Total Environ., 613–614, 492–501, https://doi.org/10.1016/j.scitotenv.2017.09.096, 2018.
Lai, M., Zhang, D., Yin, S., Song, X., and Zhang, R.: Pollution characteristics, source apportionment and activity analysis of atmospheric VOCs during winter and summer pollution in Zhengzhou City, Environm. Sci., 4108, 3500–3510, https://doi.org/10.13227/j.hjkx.202001133, 2024.
Li, B., Ho, S. S. H., Gong, S., Ni, J., Li, H., Han, L., Yang, Y., Qi, Y., and Zhao, D.: Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods, Atmos. Chem. Phys., 19, 617–638, https://doi.org/10.5194/acp-19-617-2019, 2019.
Li, J., Lu, K., Lv, W., Li, J., Zhong, L., Ou, Y., Chen, D., Huang, X., and Zhang, Y.: Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011, J. Environ. Sci., 26, 23–36, https://doi.org/10.1016/S1001-0742(13)60377-0, 2014.
Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014, Atmos. Chem. Phys., 15, 7945–7959, https://doi.org/10.5194/acp-15-7945-2015, 2015.
Li, J., Deng, S., Tohti, A., Li, G., Yi, X., Lu, Z., Liu, J., and Zhang, S.: Spatial characteristics of VOCs and their ozone and secondary organic aerosol formation potentials in autumn and winter in the Guanzhong Plain, China, Environ. Res., 211, 113036, https://doi.org/10.1016/j.envres.2022.113036, 2022.
Li, X., Wang, S., and Hao, J.: Characteristics of volatile organic compounds (VOCs) emitted from biofuel combustion in China, Environm. Sci., 32, 3515–3521, 2011.
Li, Y., Yin, S., Zhang R., Yu, S., Yang, J., and Zhang, D.: Characteristics and source apportionment of atmospheric VOCs at different pollution levels in winter in an urban area in Zhengzhou, Environm. Sci., 4108, 3500–3510, https://doi.org/10.13227/j.hjkx.202001133, 2020.
Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.: Source profiles of volatile organic compounds (VOCs) measured in China: Part I, Atmos. Environ., 42, 6247–6260, https://doi.org/10.1016/j.atmosenv.2008.01.070, 2008.
Liu, Y., Li, X., Tang, G., Wang, L., Lv, B., Guo, X., and Wang, Y.: Secondary organic aerosols in Jinan, an urban site in North China: Significant anthropogenic contributions to heavy pollution, J. Environ. Sci., 80, 107–115, https://doi.org/10.1016/j.jes.2018.11.009, 2019.
Liu, Y., Song, M., Liu, X., Zhang, Y., Hui, L., Kong, L., Zhang, Y., Zhang, C., Qu, Y., An, J., Ma, D., Tan, Q., and Feng, M.: Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China, Environ. Pollut., 257, 113599, https://doi.org/10.1016/j.envpol.2019.113599, 2020.
Liu, Z., Hu, K., Zhang, K., Zhu, S., Wang, M., and Li, L.: VOCs sources and roles in O3 formation in the central Yangtze River Delta region of China, Atmos. Environ., 302, 119755, https://doi.org/10.1016/j.atmosenv.2023.119755, 2023.
Ma, Q., Wang, W., Wu, Y., Wang, F., Jin, L., Song, Y., Han, Y., Zhang, R., and Zhang, D.: Haze caused by NOx oxidation under restricted residential and industrial activities in a mega city in the south of North China Plain, Chemosphere, 305, 135489, https://doi.org/10.1016/j.chemosphere.2022.135489, 2022.
Merino, M., Marinescu, M., Cascajo, A., Carretero, J., and Singh, D.: Evaluating the spread of Omicron COVID-19 variant in Spain, Future Gener. Comp. Sy., 149, 547–561, https://doi.org/10.1016/j.future.2023.07.025, 2023.
Monod, A., Sive, B. C., Avino, P., Chen, T., Blake, D. R., and Sherwood Rowland, F.: Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene, Atmos. Environ., 35, 135–149, https://doi.org/10.1016/S1352-2310(00)00274-0, 2001.
Mozaffar, A., Zhang, Y.-L., Fan, M., Cao, F., and Lin, Y.-C.: Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China, Atmos. Res., 240, 104923, https://doi.org/10.1016/j.atmosres.2020.104923, 2020.
Mu, L., Feng, C., Li, Y., Li, X., Liu, T., Jiang, X., Liu, Z., Bai, H., and Liu, X.: Emission factors and source profiles of VOCs emitted from coke production in Shanxi, China, Environ. Pollut., 335, 122373, https://doi.org/10.1016/j.envpol.2023.122373, 2023.
Niu, Y., Yan, Y., Chai, J., Zhang, X., Xu, Y., Duan, X., Wu, J., and Peng, L.: Effects of regional transport from different potential pollution areas on volatile organic compounds (VOCs) in Northern Beijing during non-heating and heating periods, Sci. Total Environ., 836, 155465, https://doi.org/10.1016/j.scitotenv.2022.155465, 2022.
Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/108 (NTIS PB2015-105147), 2014.
Paatero, P., Eberly, S., Brown, S. G., and Norris, G. A.: Methods for estimating uncertainty in factor analytic solutions, Atmos. Meas. Tech., 7, 781–797, https://doi.org/10.5194/amt-7-781-2014, 2014.
Pei, C., Yang, W., Zhang, Y., Song, W., Xiao, S., Wang, J., Zhang, J., Zhang, T., Chen, D., Wang, Y., Chen, Y., and Wang, X.: Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China, Sci. Total Environ., 823, 153720, https://doi.org/10.1016/j.scitotenv.2022.153720, 2022.
Petersen, M. S., Í Kongsstovu, S., Eliasen, E. H., Larsen, S., Hansen, J. L., Vest, N., Dahl, M. M., Christiansen, D. H., Møller, L. F., and Kristiansen, M. F.: Clinical characteristics of the Omicron variant – results from a Nationwide Symptoms Survey in the Faroe Islands, Int. J. Infect. Dis., 122, 636–643, https://doi.org/10.1016/j.ijid.2022.07.005, 2022.
Qi, J., Mo, Z., Yuan, B., Huang, S., Huangfu, Y., Wang, Z., Li, X., Yang, S., Wang, W., Zhao, Y., Wang, X., Wang, W., Liu, K., and Shao, M.: An observation approach in evaluation of ozone production to precursor changes during the COVID-19 lockdown, Atmos. Environ., 262, 118618, https://doi.org/10.1016/j.atmosenv.2021.118618, 2021.
Russo, R. S., Zhou, Y., White, M. L., Mao, H., Talbot, R., and Sive, B. C.: Multi-year (2004–2008) record of nonmethane hydrocarbons and halocarbons in New England: seasonal variations and regional sources, Atmos. Chem. Phys., 10, 4909–4929, https://doi.org/10.5194/acp-10-4909-2010, 2010.
Sahu, L. K., Tripathi, N., Gupta, M., Singh, V., Yadav, R., and Patel, K.: Impact of COVID-19 Pandemic lockdown in ambient concentrations of aromatic volatile organic compounds in a metropolitan city of western India, J. Geophys. Res.-Atmos., 127, e2022JD036628, https://doi.org/10.1029/2022JD036628, 2022.
Schauer, J., Kleeman, M., Cass, G., and Simoneit, B.: Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles, Environ. Sci. Technol., 36, 1169–1180, https://doi.org/10.1021/es0108077, 2002.
Shao, P., An, J., Xin, J., Wu, F., Wang, J., Ji, D., and Wang, Y.: Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China, Atmos. Res., 176–177, 64–74, https://doi.org/10.1016/j.atmosres.2016.02.015, 2016.
Shi, Y., Liu, C., Zhang, B., Simayi, M., Xi, Z., Ren, J., and Xie, S.: Accurate identification of key VOCs sources contributing to O3 formation along the Liaodong Bay based on emission inventories and ambient observations, Sci. Total Environ., 844, 156998, 10.1016/j.scitotenv.2022.156998, 2022.
Singh, B., Sohrab, S., Athar, M., Alandijany, T., Kumari, S., Nair, A., Kumari, S., Mehra, K., Chowdhary, K., Rahman, S., and Azhar, E.: Substantial changes in selected volatile organic compounds (VOCs) and associations with health risk assessments in industrial areas during the COVID-19 Pandemic, Toxics, 11, 165, https://doi.org/10.3390/toxics11020165, 2023a.
Singh, B., Singh, M., Ulman, Y., Sharma, U., Pradhan, R., Sahoo, J., Padhi, S., Chandra, P., Koul, M., Tripathi, P., Kumar, D., and Masih, J.: Distribution and temporal variation of total volatile organic compounds concentrations associated with health risk in Punjab, India, Case Studies in Chemical and Environmental Engineering, 8, 100417, https://doi.org/10.1016/j.cscee.2023.100417, 2023b.
Song, M., Li, X., Yang, S., Yu, X., Zhou, S., Yang, Y., Chen, S., Dong, H., Liao, K., Chen, Q., Lu, K., Zhang, N., Cao, J., Zeng, L., and Zhang, Y.: Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi'an, China, Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021, 2021.
Song, X., Zhang, D., Li, X., Lu, X., Wang, M., Zhang, B., and Zhang, R.: Simultaneous observations of peroxyacetyl nitrate and ozone in Central China during static management of COVID-19: Regional transport and thermal decomposition, Atmos. Res., 294, 106958, https://doi.org/10.1016/j.atmosres.2023.106958, 2023.
Song, Y., Shao, M., Liu, Y., Lu, S., Kuster, W., Goldan, P., and Xie, S.: Source apportionment of ambient volatile organic compounds in Beijing, Environ. Sci. Technol., 41, 4348–4353, https://doi.org/10.1021/es0625982, 2007.
Wang, H., Wang, Q., Chen, J. Chen, C., Huang, C., Qiao, L. Lou, S., and Lu, J.: Do vehicular emissions dominate the source of C6–C8 aromatics in the megacity Shanghai of eastern China?, Environm. Sci., 27, 290–297, https://doi.org/10.1016/j.jes.2014.05.033, 2015.
Wang, H., Li, J., Peng, Y., Zhang, M., Che, H., and Zhang, X.: The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China, Atmos. Environ., 197, 177–189, https://doi.org/10.1016/j.atmosenv.2018.10.001, 2019.
Wang, M., Zeng, L., Lu, S., Shao, M., Liu, X., Yu, X., Chen, W., Yuan, B., Zhang, Q., Hu, M., and Zhang, Z.: Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds, Anal. Methods, 6, 9424, https://doi.org/10.1039/C4AY01855A, 2014.
Wang, M., Lu, S., Shao, M., Zeng, L., Zheng, J., Xie, F., Lin, H., Hu, K., and Lu, X.: Impact of COVID-19 lockdown on ambient levels and sources of volatile organic compounds (VOCs) in Nanjing, China, Sci. Total Environ., 757, 143823, https://doi.org/10.1016/j.scitotenv.2020.143823, 2021.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wu, R., Li, J., Hao, Y., Li, Y., Zeng, L., and Xie, S.: Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China, Sci. Total Environ., 560–561, 62–72, https://doi.org/10.1016/j.scitotenv.2016.04.030, 2016.
Wu, W., Zhao, B., Wang, S., and Hao, J.: Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China, J. Environ. Sci., 53, 224–237, https://doi.org/10.1016/j.jes.2016.03.025, 2017.
Xiong, Y., Zhou, J., Xing, Z., and Du, K.: Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential, Environ. Res., 191, 110217, https://doi.org/10.1016/j.envres.2020.110217, 2020.
Yun, L., Li, C., Zhang, M., He, L., and Guo, J.: Pollution characteristics and sources of atmospheric VOCs in the coastal background area of the Pearl River Delta, Environm. Sci., 4191–4201, https://doi.org/10.13227/j.hjkx.202101155, 2021.
Zeng, X., Han, M., Ren, G., Liu, G., Wang, X., Du, K., Zhang, X., and Lin, H.: A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou, Chemosphere, 334, 139001, https://doi.org/10.1016/j.chemosphere.2023.139001, 2023.
Zhang, C., Liu, X., Zhang, Y., Tan, Q., Feng, M., Qu, Y., An, J., Deng, Y., Zhai, R., Wang, Z., Cheng, N., and Zha, S.: Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing, Atmos. Pollut. Res., 12, 230–241, https://doi.org/10.1016/j.apr.2020.12.010, 2021.
Zhang, D., He, B., Yuan, M., Yu, S., Yin, S., and Zhang, R.: Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season, J. Environ. Sci., 108, 44–57, https://doi.org/10.1016/j.jes.2021.01.035, 2021.
Zhang, D., Li, X., Yuan, M., Xu, Y., Xu, Q., Su, F., Wang, S., and Zhang, R.: Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China, Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, 2024.
Zhang, F., Shang, X., Chen, H., Xie, G., Fu, Y., Wu, D., Sun, W., Liu, P., Zhang, C., Mu, Y., Zeng, L., Wan, M., Wang, Y., Xiao, H., Wang, G., and Chen, J.: Significant impact of coal combustion on VOCs emissions in winter in a North China rural site, Sci. Total Environ., 720, 137617, https://doi.org/10.1016/j.scitotenv.2020.137617, 2020.
Zhang, J., Sun, Y., Wu, F., Sun, J., and Wang, Y.: The characteristics, seasonal variation and source apportionment of VOCs at Gongga Mountain, China, Atmos. Environ., 88, 297–305, https://doi.org/10.1016/j.atmosenv.2013.03.036, 2014.
Zhang, Z., Yan, X., Gao, F., Thai, P., Wang, H., Chen, D., Zhou, L., Gong, D., Li, Q., Morawska, L., and Wang, B.: Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China, Environ. Pollut., 238, 452–461, https://doi.org/10.1016/j.envpol.2018.03.054, 2018.
Zheng, H., Kong, S., Xing, X., Mao, Y., Hu, T., Ding, Y., Li, G., Liu, D., Li, S., and Qi, S.: Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year, Atmos. Chem. Phys., 18, 4567–4595, https://doi.org/10.5194/acp-18-4567-2018, 2018.
Zheng, J., Zhong, L., Wang, T., Louie, P. K. K., and Li, Z.: Ground-level ozone in the Pearl River Delta region: Analysis of data from a recently established regional air quality monitoring network, Atmos. Environ., 44, 814–823, https://doi.org/10.1016/j.atmosenv.2009.11.032, 2010.
Zhou, Z., Xiao, L., Fei, L., Yu, W., Lin M., Huang, T., Zhang, Z., and Tao J.: Characteristics and sources of VOCs during ozone pollution and non-pollution periods in summer in Dongguan industrial concentration area, Environm. Sci., 43, 4497–4505, https://doi.org/10.13227/j.hjkx.202111285, 2022.
Zou, Y., Yan, X. L., Flores, R. M., Zhang, L. Y., Yang, S. P., Fan, L. Y., Deng, T., Deng, X. J., and Ye, D. Q.: Source apportionment and ozone formation mechanism of VOCs considering photochemical loss in Guangzhou, China, Sci. Total Environ., 903, 166191, https://doi.org/10.1016/j.scitotenv.2023.166191, 2023.
Zuo, H., Jiang, Y., Yuan, J., Wang, Z., Zhang, P., Guo, C., Wang, Z., Chen, Y., Wen, Q., Wei, Y., and Li, X.: Pollution characteristics and source differences of VOCs before and after COVID-19 in Beijing, Sci. Total Environ., 907, 167694, https://doi.org/10.1016/j.scitotenv.2023.167694, 2024.
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
To gain insight into the impact of changes due to epidemic control policies, we undertook...
Altmetrics
Final-revised paper
Preprint