Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-1345-2024
https://doi.org/10.5194/acp-24-1345-2024
Research article
 | 
30 Jan 2024
Research article |  | 30 Jan 2024

Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity

Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood

Related authors

Measurement Report: Collocated speciation and potential mechanisms of gaseous adsorption for integrated filter-based sampling and analysis of water-soluble organic molecular markers in the atmosphere
Wei Feng, Xiangyu Zhang, Zhijuan Shao, Guofeng Shen, Hong Liao, Yuhang Wang, and Mingjie Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2106,https://doi.org/10.5194/egusphere-2025-2106, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024,https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Quantifying functional group compositions of household fuel-burning emissions
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024,https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
Measurement report: New insights into the mixing structures of black carbon on the eastern Tibetan Plateau – soot redistribution and fractal dimension enhancement by liquid–liquid phase separation
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023,https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis
Ruosi Liang, Yuzhong Zhang, Wei Chen, Peixuan Zhang, Jingran Liu, Cuihong Chen, Huiqin Mao, Guofeng Shen, Zhen Qu, Zichong Chen, Minqiang Zhou, Pucai Wang, Robert J. Parker, Hartmut Boesch, Alba Lorente, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 8039–8057, https://doi.org/10.5194/acp-23-8039-2023,https://doi.org/10.5194/acp-23-8039-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Copper accelerates photochemically induced radical chemistry of iron-containing secondary organic aerosol (SOA)
Kevin Kilchhofer, Markus Ammann, Laura Torrent, Rico K. Y. Cheung, and Peter A. Alpert
Atmos. Chem. Phys., 25, 8061–8086, https://doi.org/10.5194/acp-25-8061-2025,https://doi.org/10.5194/acp-25-8061-2025, 2025
Short summary
The role of surface-active macromolecules in the ice-nucleating ability of lignin, Snomax, and agricultural soil extracts
Kathleen A. Alden, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 25, 6179–6195, https://doi.org/10.5194/acp-25-6179-2025,https://doi.org/10.5194/acp-25-6179-2025, 2025
Short summary
Secondary organic aerosol formation from nitrate radical oxidation of styrene: aerosol yields, chemical composition, and hydrolysis of organic nitrates
Yuchen Wang, Xiang Zhang, Yuanlong Huang, Yutong Liang, and Nga L. Ng
Atmos. Chem. Phys., 25, 5215–5231, https://doi.org/10.5194/acp-25-5215-2025,https://doi.org/10.5194/acp-25-5215-2025, 2025
Short summary
Hydrogen peroxide photoformation in particulate matter and its contribution to S(IV) oxidation during winter in Fairbanks, Alaska
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025,https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
Insight into the size-resolved markers and eco-health significance of microplastics from typical sources in northwest China
Liyan Liu, Hongmei Xu, Mengyun Yang, Abdullah Akhtar, Jian Sun, and Zhenxing Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1821,https://doi.org/10.5194/egusphere-2025-1821, 2025
Short summary

Cited articles

Ahmed, C. S., Yang, J., Chen, J. Y., Jiang, H., Cullen, C., Karavalakis, G., and Lin, Y.-H.: Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels, Sci. Total Environ., 706, 135732, https://doi.org/10.1016/j.scitotenv.2019.135732, 2020. 
Al-Kindi, S. G., Brook, R. D., Biswal, S., and Rajagopalan, S.: Environmental determinants of cardiovascular disease: lessons learned from air pollution, Nat. Rev. Cardiol., 17, 656–672, https://doi.org/10.1038/s41569-020-0371-2, 2020. 
Bao, F., Li, M., Zhang, Y., Chen, C., and Zhao, J.: Photochemical aging of Beijing urban PM2.5: HONO production, Environ. Sci. Technol., 52, 6309–6316, https://doi.org/10.1021/acs.est.8b00538, 2018. 
Bari, M. A. and Kindzierski, W. B.: Eight-year (2007–2014) trends in ambient fine particulate matter (PM2.5) and its chemical components in the Capital Region of Alberta, Canada, Environ. Int., 91, 122–132, https://doi.org/10.1016/j.envint.2016.02.033, 2016. 
Bonetta, S., Bonetta, S., Feretti, D., Moretti, M., Verani, M., De Donno, A., Schilirò, T., Carraro, E., and Gelatti, U.: DNA damage induced by PM0.5 samples in A549 and BEAS-2B human cell lines: Results of the MAPEC study, Toxicol. Lett., 280, 208–208, https://doi.org/10.1016/j.toxlet.2017.07.571, 2017. 
Download
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Share
Altmetrics
Final-revised paper
Preprint