Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-1345-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-1345-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Weijie Huang
International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Guofeng Shen
Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Yuting Pang
International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Mingwei Tang
International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Weijun Li
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Zhen Zhao
International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Hanhan Li
International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Yaqian Wei
International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Longjiao Xie
Health Science Center, Peking University, Beijing 100871, China
Tariq Mehmood
College of Ecology and Environment, Hainan University, Haikou 570228, China
Related authors
No articles found.
Wei Feng, Xiangyu Zhang, Zhijuan Shao, Guofeng Shen, Hong Liao, Yuhang Wang, and Mingjie Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2106, https://doi.org/10.5194/egusphere-2025-2106, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In this work, the relative differences in particle concentrations of water-soluble organic molecular markers (WSOMMs) between the collocated filter samples represent the uncertainties in the measurements. The comparisons between the measurements of chemically treated and untreated backup filter samples indicate that the WSOMMs detected on the backup filters may originate from heterogeneous reactions on the filter surfaces, but are not caused by the adsorption of gaseous molecules.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024, https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
Short summary
Infrared spectroscopy is a cost-effective measurement technique to characterize the chemical composition of organic aerosol emissions. This technique differentiates the organic matter emission factor from different fuel sources by their characteristic functional groups. Comparison with collocated measurements suggests that polycyclic aromatic hydrocarbon concentrations in emissions estimated by conventional chromatography may be substantially underestimated.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Ruosi Liang, Yuzhong Zhang, Wei Chen, Peixuan Zhang, Jingran Liu, Cuihong Chen, Huiqin Mao, Guofeng Shen, Zhen Qu, Zichong Chen, Minqiang Zhou, Pucai Wang, Robert J. Parker, Hartmut Boesch, Alba Lorente, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 8039–8057, https://doi.org/10.5194/acp-23-8039-2023, https://doi.org/10.5194/acp-23-8039-2023, 2023
Short summary
Short summary
We compare and evaluate East Asian methane emissions inferred from different satellite observations (GOSAT and TROPOMI). The results show discrepancies over northern India and eastern China. Independent ground-based observations are more consistent with TROPOMI-derived emissions in northern India and GOSAT-derived emissions in eastern China.
Yaqin Gao, Hongli Wang, Lingling Yuan, Shengao Jing, Bin Yuan, Guofeng Shen, Liang Zhu, Abigail Koss, Yingjie Li, Qian Wang, Dan Dan Huang, Shuhui Zhu, Shikang Tao, Shengrong Lou, and Cheng Huang
Atmos. Chem. Phys., 23, 6633–6646, https://doi.org/10.5194/acp-23-6633-2023, https://doi.org/10.5194/acp-23-6633-2023, 2023
Short summary
Short summary
A near-complete speciation of reactive organic gases from residential combustion was developed to get more insights into their atmospheric effects. Oxygenated species, higher hydrocarbons and nitrogen-containing species played larger roles in these emissions compared with common hydrocarbons. Based on the near-complete speciation, these emissions were largely underestimated, leading to more underestimation of their hydroxyl radical reactivity and secondary organic aerosol formation potential.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Clarissa Baldo, Akinori Ito, Michael D. Krom, Weijun Li, Tim Jones, Nick Drake, Konstantin Ignatyev, Nicholas Davidson, and Zongbo Shi
Atmos. Chem. Phys., 22, 6045–6066, https://doi.org/10.5194/acp-22-6045-2022, https://doi.org/10.5194/acp-22-6045-2022, 2022
Short summary
Short summary
High ionic strength relevant to the aerosol-water enhanced proton-promoted dissolution of iron in coal fly ash (up to 7 times) but suppressed oxalate-promoted dissolution at low pH (< 3). Fe in coal fly ash dissolved up to 7 times faster than in Saharan dust at low pH. A global model with the updated dissolution rates of iron in coal fly ash suggested a larger contribution of pyrogenic dissolved Fe over regions with a strong impact from fossil fuel combustions.
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Liang Xu, Xiaohuan Liu, Huiwang Gao, Xiaohong Yao, Daizhou Zhang, Lei Bi, Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Qi Yuan, and Weijun Li
Atmos. Chem. Phys., 21, 17715–17726, https://doi.org/10.5194/acp-21-17715-2021, https://doi.org/10.5194/acp-21-17715-2021, 2021
Short summary
Short summary
We quantified different types of marine aerosols and explored the Cl depletion of sea salt aerosol (SSA) in the eastern China seas and the northwestern Pacific Ocean. We found that anthropogenic acidic gases in the troposphere were transported longer distances compared to the anthropogenic aerosols and could significantly impact remote marine aerosols. Meanwhile, variations of chloride depletion in SSA can serve as a potential indicator for anthropogenic gaseous pollutants in remote marine air.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Liang Xu, Satoshi Fukushima, Sophie Sobanska, Kotaro Murata, Ayumi Naganuma, Lei Liu, Yuanyuan Wang, Hongya Niu, Zongbo Shi, Tomoko Kojima, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 20, 14321–14332, https://doi.org/10.5194/acp-20-14321-2020, https://doi.org/10.5194/acp-20-14321-2020, 2020
Short summary
Short summary
We quantified the mixing structures of soot particles and found that the dominant mixing structure changed from fresh to partially embedded to fully embedded along the pathway of an Asian dust storm from eastern China to Japan. Soot particles became more compact following transport. Our findings not only provide direct evidence for soot aging during regional transport but also help us understand how their morphology changes in different air environments.
Mingjie Xie, Zhenzhen Zhao, Amara L. Holder, Michael D. Hays, Xi Chen, Guofeng Shen, James J. Jetter, Wyatt M. Champion, and Qin'geng Wang
Atmos. Chem. Phys., 20, 14077–14090, https://doi.org/10.5194/acp-20-14077-2020, https://doi.org/10.5194/acp-20-14077-2020, 2020
Short summary
Short summary
This study investigated the composition, structures, and light absorption of N-containing aromatic compounds (NACs) in PM2.5 emitted from burning red oak and charcoal in a variety of cookstoves. The results suggest that the identified NACs might have substantial fractions remaining in the gas phase. In comparison to other sources, cookstove emissions from red oak or charcoal fuels did not exhibit unique NAC structural features but had distinct NAC composition.
Cited articles
Ahmed, C. S., Yang, J., Chen, J. Y., Jiang, H., Cullen, C., Karavalakis, G., and Lin, Y.-H.: Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels, Sci. Total Environ., 706, 135732, https://doi.org/10.1016/j.scitotenv.2019.135732, 2020.
Al-Kindi, S. G., Brook, R. D., Biswal, S., and Rajagopalan, S.: Environmental determinants of cardiovascular disease: lessons learned from air pollution, Nat. Rev. Cardiol., 17, 656–672, https://doi.org/10.1038/s41569-020-0371-2, 2020.
Bao, F., Li, M., Zhang, Y., Chen, C., and Zhao, J.: Photochemical aging of Beijing urban PM2.5: HONO production, Environ. Sci. Technol., 52, 6309–6316, https://doi.org/10.1021/acs.est.8b00538, 2018.
Bari, M. A. and Kindzierski, W. B.: Eight-year (2007–2014) trends in ambient fine particulate matter (PM2.5) and its chemical components in the Capital Region of Alberta, Canada, Environ. Int., 91, 122–132, https://doi.org/10.1016/j.envint.2016.02.033, 2016.
Bonetta, S., Bonetta, S., Feretti, D., Moretti, M., Verani, M., De Donno, A., Schilirò, T., Carraro, E., and Gelatti, U.: DNA damage induced by PM0.5 samples in A549 and BEAS-2B human cell lines: Results of the MAPEC study, Toxicol. Lett., 280, 208–208, https://doi.org/10.1016/j.toxlet.2017.07.571, 2017.
Borlaza, L. J. S., Cosep, E. M. R., Kim, S., Lee, K., Joo, H., Park, M., Bate, D., Cayetano, M. G., and Park, K.: Oxidative potential of fine ambient particles in various environments, Environ. Pollut., 243, 1679–1688, https://doi.org/10.1016/j.envpol.2018.09.074, 2018.
Cachon, B. F., Firmin, S., Verdin, A., Ayi-Fanou, L., Billet, S., Cazier, F., Martin, P. J., Aissi, F., Courcot, D., and Sanni, A.: Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin, Environ. Pollut., 185, 340–351, https://doi.org/10.1016/j.envpol.2013.10.026, 2014.
Chen, Q., Luo, X.-S., Chen, Y., Zhao, Z., Hong, Y., Pang, Y., Huang, W., Wang, Y., and Jin, L.: Seasonally varied cytotoxicity of organic components in PM2.5 from urban and industrial areas of a Chinese megacity, Chemosphere, 230, 424–431, https://doi.org/10.1016/j.chemosphere.2019.04.226, 2019.
Cheung, K., Ntziachristos, L., Tzamkiozis, T., Schauer, J., Samaras, Z., Moore, K., and Sioutas, C.: Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential, Aerosol Sci. Technol., 44, 500–513, https://doi.org/10.1080/02786821003758294, 2010.
Chi, K. H., Huang, Y.-T., Nguyen, H. M., Tran, T. T.-H., Chantara, S., and Ngo, T. H.: Characteristics and health impacts of PM2.5-bound PCDD/Fs in three Asian countries, Environ. Int., 167, 107441, https://doi.org/10.1016/j.envint.2022.107441, 2022.
Chowdhury, S., Pozzer, A., Haines, A., Klingmuller, K., Munzel, T., Paasonen, P., Sharma, A., Venkataraman, C., and Lelieveld, J.: Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols, Environ. Int., 159, 107020, https://doi.org/10.1016/j.envint.2021.107020, 2022.
Clemens, T., Turner, S., and Dibben, C.: Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans, Environ. Int., 107, 216–226, https://doi.org/10.1016/j.envint.2017.07.018, 2017.
Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y., and Hopke, P. K.: Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the COVID-19 outbreak, Environ. Sci. Technol., 54, 9917–9927, https://doi.org/10.1021/acs.est.0c02776, 2020.
De la Puente, G., Iglesias, M. J., Fuente, E., and Pis, J. J.: Changes in the structure of coals of different rank due to oxidation – effects on pyrolysis behaviour, J. Anal. Appl. Pyrol., 47, 33–42, https://doi.org/10.1016/S0165-2370(98)00087-4, 1998.
Du, H., Liu, Y., Shi, G., Wang, F., He, M. Z., and Li, T.: Associations between source-specific fine particulate matter and mortality and hospital admissions in Beijing, China, Environ. Sci. Technol., 56, 1174–1182, https://doi.org/10.1021/acs.est.1c07290, 2021.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51, 2611–2620, https://10.1021/acs.est.6b06151, 2017.
Flores, R. M., Mertoğlu, E., Özdemir, H., Akkoyunlu, B. O., Demir, G., Ünal, A., and Tayanç, M.: A high-time resolution study of PM2.5, organic carbon, and elemental carbon at an urban traffic site in Istanbul, Atmos. Environ., 223, 117241, https://doi.org/10.1016/j.atmosenv.2019.117241, 2020.
Gali, N. K., Li, G., Ning, Z., and Brimblecombe, P.: Diurnal trends in redox characteristics of water-soluble and-insoluble PM components, Environ. Pollut., 254, 112841, https://doi.org/10.1016/j.envpol.2019.07.009, 2019.
Hao, Y., Gao, C., Deng, S., Yuan, M., Song, W., Lu, Z., and Qiu, Z.: Chemical characterisation of PM2.5 emitted from motor vehicles powered by diesel, gasoline, natural gas and methanol fuel, Sci. Total Environ., 674, 128–139, https://doi.org/10.1016/j.scitotenv.2019.03.410, 2019.
He, K., Shen, Z., Zhang, B., Sun, J., Zou, H., Zhou, M., Zhang, Z., Xu, H., Ho, S. S. H., and Cao, J.: Emission profiles of volatile organic compounds from various geological maturity coal and its clean coal briquetting in China, Atmos. Res., 274, 106200, https://doi.org/10.1016/j.atmosres.2022.106200, 2022.
Huang, W., Pang, Y., Luo, X.-S., Chen, Q., Wu, L., Tang, M., Hong, Y., Chen, J., and Jin, L.: The cytotoxicity and genotoxicity of PM2.5 during a snowfall event in different functional areas of a megacity, Sci. Total Environ., 741, 140267, https://doi.org/10.1016/j.scitotenv.2020.140267, 2020.
Jain, S., Sharma, S., Vijayan, N., and Mandal, T.: Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: a four year study over Delhi, India, Environ. Pollut., 262, 114337, https://doi.org/10.1016/j.envpol.2020.114337, 2020.
Jesus, R. M. d., Mosca, A. C., Guarieiro, A. L., Rocha, G. O. d., and Andrade, J. B. d.: In vitro evaluation of oxidative stress caused by fine particles (PM2.5) exhausted from heavy-duty vehicles using diesel/biodiesel blends under real world conditions, J. Braz. Chem. Soc., 29, 1268–1277, https://doi.org/10.21577/0103-5053.20170223, 2018.
Jia, Y.-Y., Wang, Q., and Liu, T.: Toxicity research of PM2.5 compositions in vitro, Int. J. Environ. Res. Publ. Health, 14, 232, https://doi.org/10.3390/ijerph14030232, 2017.
Jia, Y., Li, X., Nan, A., Zhang, N., Chen, L., Zhou, H., Zhang, H., Qiu, M., Zhu, J., and Ling, Y.: Circular RNA 406961 interacts with ILF2 to regulate PM2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways, Environ. Int., 141, 105755, https://doi.org/10.1016/j.envint.2020.105755, 2020.
Kang, M., Ren, L., Ren, H., Zhao, Y., Kawamura, K., Zhang, H., Wei, L., Sun, Y., Wang, Z., and Fu, P.: Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes, Environ. Pollut., 243, 1579–1587, https://doi.org/10.1016/j.envpol.2018.09.118, 2018.
Kelly, F.: Air pollution and chronic bronchitis: the evidence firms up, Thorax, 76, 744–745, https://doi.org/10.1136/thoraxjnl-2021-216883, 2021.
Kelly, F. J. and Fussell, J. C.: Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter, Atmos. Environ., 60, 504–526, https://doi.org/10.1016/j.atmosenv.2012.06.039, 2012.
Kelly, F. J. and Fussell, J. C.: Toxicity of airborne particles – established evidence, knowledge gaps and emerging areas of importance, Philos. T. R. Soc. A, 378, 20190322, https://doi.org/10.1098/rsta.2019.0322, 2020.
Kruskal, W. H. and Wallis, W. A.: Use of ranks in one-criterion variance analysis, J. Am. Stat. Assoc., 47, 583–621, https://doi.org/10.2307/2280779, 1952.
Landwehr, K. R., Hillas, J., Mead-Hunter, R., Brooks, P., King, A., O'Leary, R. A., Kicic, A., Mullins, B. J., and Larcombe, A. N.: Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model, J. Hazard. Mater., 420, 126637, https://doi.org/10.1016/j.jhazmat.2021.126637, 2021.
Lelieveld, S., Wilson, J., Dovrou, E., Mishra, A., Lakey, P. S. J., Shiraiwa, M., Poschl, U., and Berkemeier, T.: Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species, Environ. Sci. Technol., 55, 14069–14079, https://doi.org/10.1021/acs.est.1c03875, 2021.
Li, H., Zhao, Z., Luo, X.-S., Fang, G., Zhang, D., Pang, Y., Huang, W., Mehmood, T., and Tang, M.: Insight into urban PM2.5 chemical composition and environmentally persistent free radicals attributed human lung epithelial cytotoxicity, Ecotoxicol. Environ. Saf., 234, 113356, https://doi.org/10.1016/j.ecoenv.2022.113356, 2022a.
Li, H., Tang, M., Luo, X., Li, W., Pang, Y., Huang, W., Zhao, Z., Wei, Y., Long, T., and Mehmood, T.: Compositional characteristics and toxicological responses of human lung epithelial cells to inhalable particles (PM10) from ten typical biomass fuel combustions, Particuology, 78, 16–22, https://doi.org/10.1016/j.partic.2022.09.006, 2023.
Li, T., Yu, Y., Sun, Z., and Duan, J.: A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence, Part. Fibre Toxicol., 19, 67, https://doi.org/10.1186/s12989-022-00507-5, 2022b.
Liang, R., Chen, R., Yin, P., van Donkelaar, A., Martin, R. V., Burnett, R., Cohen, A. J., Brauer, M., Liu, C., and Wang, W.: Associations of long-term exposure to fine particulate matter and its constituents with cardiovascular mortality: A prospective cohort study in China, Environ. Int., 162, 107156, https://doi.org/10.1016/j.envint.2022.107156, 2022.
Liao, X., Zhang, S., Wang, X., Shao, J., Zhang, X., Wang, X., Yang, H., and Chen, H.: Co-combustion of wheat straw and camphor wood with coal slime: Thermal behavior, kinetics, and gaseous pollutant emission characteristics, Energy, 234, 1–11, https://doi.org/10.1016/j.energy.2021.121292, 2021.
Lin, Y.-C., Li, Y.-C., Amesho, K. T., Shangdiar, S., Chou, F.-C., and Cheng, P.-C.: Chemical characterization of PM2.5 emissions and atmospheric metallic element concentrations in PM2.5 emitted from mobile source gasoline-fueled vehicles, Sci. Total Environ., 739, 139942, https://doi.org/10.1016/j.scitotenv.2020.139942, 2020.
Mack, S. M., Madl, A. K., and Pinkerton, K. E.: Respiratory health effects of exposure to ambient particulate matter and bioaerosols, Compr. Physiol., 10, 1, https://doi.org/10.1002/cphy.c180040, 2019.
Madreiter-Sokolowski, C. T., Thomas, C., and Ristow, M.: Interrelation between ROS and Ca2+ in aging and age-related diseases, Redox Biol., 36, 101678, https://doi.org/10.1016/j.redox.2020.101678, 2020.
Mahilang, M., Deb, M. K., and Pervez, S.: Biogenic secondary organic aerosols: A review on formation mechanism, analytical challenges and environmental impacts, Chemosphere, 262, 127771, https://doi.org/10.1016/j.chemosphere.2020.127771, 2021.
McDuffie, E. E., Martin, R. V., Spadaro, J. V., Burnett, R., Smith, S. J., O'Rourke, P., Hammer, M. S., van Donkelaar, A., Bindle, L., Shah, V., Jaegle, L., Luo, G., Yu, F., Adeniran, J. A., Lin, J., and Brauer, M.: Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales, Nat. Commun., 12, 3594, https://doi.org/10.1038/s41467-021-23853-y, 2021.
Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K., Bottle, S., and Ristovski, Z.: To sonicate or not to sonicate PM filters: reactive oxygen species generation upon ultrasonic irradiation, Aerosol Sci. Technol., 48, 1276–1284, https://doi.org/10.1080/02786826.2014.981330, 2014.
Newman, J. D., Bhatt, D. L., Rajagopalan, S., Balmes, J. R., Brauer, M., Breysse, P. N., Brown, A. G. M., Carnethon, M. R., Cascio, W. E., Collman, G. W., Fine, L. J., Hansel, N. N., Hernandez, A., Hochman, J. S., Jerrett, M., Joubert, B. R., Kaufman, J. D., Malik, A. O., Mensah, G. A., Newby, D. E., Peel, J. L., Siegel, J., Siscovick, D., Thompson, B. L., Zhang, J., and Brook, R. D.: Cardiopulmonary Impact of Particulate Air Pollution in High-Risk Populations: JACC State-of-the-Art Review, J. Am. Coll. Cardiol., 76, 2878–2894, https://doi.org/10.1016/j.jacc.2020.10.020, 2020.
Niu, X., Chuang, H.-C., Wang, X., Ho, S. S. H., Li, L., Qu, L., Chow, J. C., Watson, J. G., Sun, J., Lee, S., Cao, J., and Ho, K. F.: Cytotoxicity of PM2.5 vehicular emissions in the Shing Mun Tunnel, Hong Kong, Environ. Pollut., 263, 114386, https://doi.org/10.1016/j.envpol.2020.114386, 2020.
Ostro, B., Roth, L., Malig, B., and Marty, M.: The effects of fine particle components on respiratory hospital admissions in children, Environ. Health Perspect., 117, 475–480, https://doi.org/10.1289/ehp.11848, 2009.
Pang, Y., Huang, W., Luo, X.-S., Chen, Q., Zhao, Z., Tang, M., Hong, Y., Chen, J., and Li, H.: In-vitro human lung cell injuries induced by urban PM2.5 during a severe air pollution episode: variations associated with particle components, Ecotoxicol. Environ. Saf., 206, 111406, https://doi.org/10.1016/j.ecoenv.2020.111406, 2020.
Panko, J. M., Hitchcock, K. M., Fuller, G. W., and Green, D.: Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments, Atmosphere, 10, 99, https://doi.org/10.3390/atmos10020099, 2019.
Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., Borlaza, L. J. S., Lim, H., Shin, H., Chung, K. H., Choi, Y.-H., Park, S. G., Bae, M.-S., Lee, J., Song, H., and Park, K.: Differential toxicities of fine particulate matters from various sources, Sci. Rep., 8, 17007, https://10.1038/s41598-018-35398-0, 2018.
Piao, M. J., Ahn, M. J., Kang, K. A., Ryu, Y. S., Hyun, Y. J., Shilnikova, K., Zhen, A. X., Jeong, J. W., Choi, Y. H., Kang, H. K., Koh, Y. S., and Hyun, J. W.: Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis, Arch. Toxicol., 92, 2077–2091, https://doi.org/10.1007/s00204-018-2197-9, 2018.
Sahu, S. K., Mangaraj, P., Beig, G., Samal, A., Pradhan, C., Dash, S., and Tyagi, B.: Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India, Environ. Pollut., 286, 117165, https://doi.org/10.1016/j.envpol.2021.117165, 2021.
Shen, H., Luo, Z., Xiong, R., Liu, X., Zhang, L., Li, Y., Du, W., Chen, Y., Cheng, H., Shen, G., and Tao, S.: A critical review of pollutant emission factors from fuel combustion in home stoves, Environ. Int., 157, 106841, https://doi.org/10.1016/j.envint.2021.106841, 2021.
Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio, A. M., Fröhlich-Nowoisky, J., and Fujitani, Y.: Aerosol health effects from molecular to global scales, Environ. Sci. Technol., 51, 13545–13567, https://doi.org/10.1021/acs.est.7b04417, 2017.
Sillapapiromsuk, S., Chantara, S., Tengjaroenkul, U., Prasitwattanaseree, S., and Prapamontol, T.: Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions, Chemosphere, 93, 1912–1919, https://doi.org/10.1016/j.chemosphere.2013.06.071, 2013.
Smith, S. J.: Cleaning cars, grid and air, Nat. Energy, 6, 19–20, https://doi.org/10.1038/s41560-020-00769-3, 2021.
Sørensen, M., Schins, R. P. F., Hertel, O., and Loft, S.: Transition Metals in Personal Samples of PM2.5 and Oxidative Stress in Human Volunteers, Cancer Epidem. Biomar., 14, 1340–1343, https://doi.org/10.1158/1055-9965.Epi-04-0899, 2005.
Srivastava, D., Xu, J., Vu, T. V., Liu, D., Li, L., Fu, P., Hou, S., Moreno Palmerola, N., Shi, Z., and Harrison, R. M.: Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing, Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, 2021.
Stevanovic, S., Gali, N. K., Salimi, F., Brown, R., Ning, Z., Cravigan, L., Brimblecombe, P., Bottle, S., and Ristovski, Z. D.: Diurnal profiles of particle-bound ROS of PM2.5 in urban environment of Hong Kong and their association with PM2.5, black carbon, ozone and PAHs, Atmos. Environ., 219, 117023, https://doi.org/10.1016/j.atmosenv.2019.117023, 2019.
Sun, J., Shen, Z., Zhang, Y., Zhang, Q., Lei, Y., Huang, Y., Niu, X., Xu, H., Cao, J., Ho, S. S. H., and Li, X.: Characterization of PM2.5 source profiles from typical biomass burning of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in China, Atmos. Environ., 205, 36–45, https://doi.org/10.1016/j.atmosenv.2019.02.038, 2019.
Tao, J., Zhang, L., Zhang, R., Wu, Y., Zhang, Z., Zhang, X., Tang, Y., Cao, J., and Zhang, Y.: Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis – a case study in Beijing, China, Sci. Total Environ., 543, 326–335, https://doi.org/10.1016/j.scitotenv.2015.11.057, 2016.
Tian, Y., Li, Y., Liang, Y., Xue, Q., Feng, X., and Feng, Y.: Size distributions of source-specific risks of atmospheric heavy metals: An advanced method to quantify source contributions to size-segregated respiratory exposure, J. Hazard. Mater., 407, 124355, https://doi.org/10.1016/j.jhazmat.2020.124355, 2021.
Tuet, W. Y., Liu, F., de Oliveira Alves, N., Fok, S., Artaxo, P., Vasconcellos, P., Champion, J. A., and Ng, N. L.: Chemical oxidative potential and cellular oxidative stress from open biomass burning aerosol, Environ. Sci. Technol. Lett., 6, 126–132, https://doi.org/10.1021/acs.estlett.9b00060, 2019.
Verma, V., Shafer, M. M., Schauer, J. J., and Sioutas, C.: Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles, Atmos. Environ., 44, 5165–5173, https://doi.org/10.1016/j.atmosenv.2010.08.052, 2010.
Victor, F. C. and Gottlieb, A. B.: TNF-alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis, J. Drugs Dermatol., 1, 264–275, 2002
Wang, S., Hu, G., Yan, Y., Wang, S., Yu, R., and Cui, J.: Source apportionment of metal elements in PM2.5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method, Atmos. Environ., 198, 302–312, https://doi.org/10.1016/j.atmosenv.2018.10.056, 2019.
Wang, T., Tian, M., Ding, N., Yan, X., Chen, S.-J., Mo, Y.-Z., Yang, W.-Q., Bi, X.-H., Wang, X.-M., and Mai, B.-X.: Semivolatile Organic Compounds (SOCs) in Fine Particulate Matter (PM2.5) during Clear, Fog, and Haze Episodes in Winter in Beijing, China, Environ. Sci. Technol., 52, 5199–5207, https://doi.org/10.1021/acs.est.7b06650, 2018.
Wang, Y., Cao, M., Liu, A., Di, W., Zhao, F., Tian, Y., and Jia, J.: Changes of inflammatory cytokines and neurotrophins emphasized their roles in hypoxic–ischemic brain damage, Int. J. Neurosci., 123, 191–195, https://10.3109/00207454.2012.744755, 2013.
Wang, Y., Wang, M., Li, S., Sun, H., Mu, Z., Zhang, L., Li, Y., and Chen, Q.: Study on the oxidation potential of the water-soluble components of ambient PM2.5 over Xi'an, China: Pollution levels, source apportionment and transport pathways, Environ. Int., 136, 105515, https://doi.org/10.1016/j.envint.2020.105515, 2020.
Weagle, C. L., Snider, G., Li, C., van Donkelaar, A., Philip, S., Bissonnette, P., Burke, J., Jackson, J., Latimer, R., and Stone, E.: Global sources of fine particulate matter: interpretation of PM2.5 chemical composition observed by SPARTAN using a global chemical transport model, Environ. Sci. Technol., 52, 11670–11681, https://doi.org/10.1021/acs.est.8b01658, 2018.
Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years, Nat. Geosci., 9, 282–285, https://10.1038/ngeo2665, 2016.
Wong, Y. K., Huang, X., Louie, P. K., Yu, A. L., Chan, D. H., and Yu, J. Z.: Tracking separate contributions of diesel and gasoline vehicles to roadside PM2.5 through online monitoring of volatile organic compounds and PM2.5 organic and elemental carbon: a 6-year study in Hong Kong, Atmos. Chem. Phys., 20, 9871–9882, https://doi.org/10.5194/acp-20-9871-2020, 2020.
Wu, B., Shen, X., Cao, X., Yao, Z., and Wu, Y.: Characterization of the chemical composition of PM2.5 emitted from on-road China III and China IV diesel trucks in Beijing, China, Sci. Total Environ., 551, 579–589, https://doi.org/10.1016/j.scitotenv.2016.02.048, 2016.
Wu, D., Zheng, H., Li, Q., Jin, L., Lyu, R., Ding, X., Huo, Y., Zhao, B., Jiang, J., and Chen, J.: Toxic potency-adjusted control of air pollution for solid fuel combustion, Nat. Energy, 7, 194–202, https://doi.org/10.1038/s41560-021-00951-1, 2022.
Xia, T., Korge, P., Weiss, J. N., Li, N., Venkatesen, M. I., Sioutas, C., and Nel, A.: Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity, Environ. Health Perspect., 112, 1347–1358, https://doi.org/10.1289/ehp.7167, 2004.
Xie, J., Jin, L., Cui, J., Luo, X., Li, J., Zhang, G., and Li, X.: Health risk-oriented source apportionment of PM2.5-associated trace metals, Environ. Pollut., 262, 114655, https://doi.org/10.1016/j.envpol.2020.114655, 2020.
Xu, F., Shi, X., Qiu, X., Jiang, X., Fang, Y., Wang, J., Hu, D., and Zhu, T.: Investigation of the chemical components of ambient fine particulate matter (PM2.5) associated with in vitro cellular responses to oxidative stress and inflammation, Environ. Int., 136, 105475, https://doi.org/10.1016/j.envint.2020.105475, 2020.
Xu, W., Liu, X., Liu, L., Dore, A. J., Tang, A., Lu, L., Wu, Q., Zhang, Y., Hao, T., Pan, Y., Chen, J., and Zhang, F.: Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors, Atmos. Environ., 210, 241–252, https://doi.org/10.1016/j.atmosenv.2019.04.050, 2019.
Yan, Q., Kong, S., Yan, Y., Liu, H., Wang, W., Chen, K., Yin, Y., Zheng, H., Wu, J., Yao, L., Zeng, X., Cheng, Y., Zheng, S., Wu, F., Niu, Z., Zhang, Y., Zheng, M., Zhao, D., Liu, D., and Qi, S.: Emission and simulation of primary fine and submicron particles and water-soluble ions from domestic coal combustion in China, Atmos. Environ., 224, 117308, https://doi.org/10.1016/j.atmosenv.2020.117308, 2020.
Yang, H.-H., Dhital, N. B., Wang, L.-C., Hsieh, Y.-S., Lee, K.-T., Hsu, Y.-T., and Huang, S.-C.: Chemical Characterization of Fine Particulate Matter in Gasoline and Diesel Vehicle Exhaust, Aerosol Air Qual. Res., 19, 1439–1449, https://doi.org/10.4209/aaqr.2019.04.0191, 2019.
Zhang, J., Liu, L., Xu, L., Lin, Q., Zhao, H., Wang, Z., Guo, S., Hu, M., Liu, D., Shi, Z., Huang, D., and Li, W.: Exploring wintertime regional haze in northeast China: role of coal and biomass burning, Atmos. Chem. Phys., 20, 5355–5372, https://doi/org/10.5194/acp-20-5355-2020, 2020.
Zhang, L., Liu, Y., and Hao, L.: Contributions of open crop straw burning emissions to PM2.5 concentrations in China, Environ. Res. Lett., 11, 014014, https://doi.org/10.1088/1748-9326/11/1/014014, 2016.
Zhang, Q., Li, Z., Shen, Z., Zhang, T., Zhang, Y., Sun, J., Zeng, Y., Xu, H., Wang, Q., Hang Ho, S. S., and Cao, J.: Source profiles of molecular structure and light absorption of PM2.5 brown carbon from residential coal combustion emission in Northwestern China, Environ. Pollut., 299, 118866, https://doi.org/10.1016/j.envpol.2022.118866, 2022.
Zhang, X., Zhao, X., Ji, G., Ying, R., Shan, Y., and Lin, Y.: Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China, J. Atmos. Chem., 76, 73–88, https://doi.org/10.1007/s10874-019-09388-z, 2019.
Zhang, Y., Shen, Z., Sun, J., Zhang, L., Zhang, B., Zou, H., Zhang, T., Hang Ho, S. S., Chang, X., Xu, H., Wang, T., and Cao, J.: Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM2.5 emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios, Environ. Pollut., 268, 115881, https://doi.org/10.1016/j.envpol.2020.115881, 2021.
Zhang, Y. L., Huang, R. J., El Haddad, I., Ho, K. F., Cao, J. J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach, K. R., Canonaco, F., Slowik, J. G., Salazar, G., Schwikowski, M., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Baltensperger, U., Prévôt, A. S. H., and Szidat, S.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013, Atmos. Chem. Phys., 15, 1299–1312, https://10.5194/acp-15-1299-2015, 2015.
Zhao, K., Zhao, G. M., Wu, D., Soong, Y., Birk, A. V., Schiller, P. W., and Szeto, H. H.: Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury, J. Biol. Chem., 279, 34682–34690, https://doi.org/10.1074/jbc.M402999200, 2004.
Zhao, M., Zeng, S., Liu, S., Li, Z., and Jing, L.: Metal accumulation by plants growing in China: Capacity, synergy, and moderator effects, Ecol. Eng., 148, 105790, https://doi.org/10.1016/j.ecoleng.2020.105790, 2020.
Zhao, X., Zhou, W., Han, L., and Locke, D.: Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities, Environ. Int., 133, 105145, https://doi.org/10.1016/j.envint.2019.105145, 2019.
Zhou, W., Jiang, J., Duan, L., and Hao, J.: Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process, Environ. Sci. Technol., 50, 7861–7869, https://10.1021/acs.est.6b00075, 2016.
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical...
Altmetrics
Final-revised paper
Preprint