Articles | Volume 24, issue 21
https://doi.org/10.5194/acp-24-12409-2024
https://doi.org/10.5194/acp-24-12409-2024
Research article
 | 
11 Nov 2024
Research article |  | 11 Nov 2024

Rapid oxidation of phenolic compounds by O3 and HO: effects of the air–water interface and mineral dust in tropospheric chemical processes

Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He

Related authors

Mechanistic insights into chloroacetic acid production from atmospheric multiphase VOC-chlorine chemistry
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3137,https://doi.org/10.5194/egusphere-2024-3137, 2024
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis
Atmos. Chem. Phys., 25, 1333–1351, https://doi.org/10.5194/acp-25-1333-2025,https://doi.org/10.5194/acp-25-1333-2025, 2025
Short summary
The surface tension and cloud condensation nuclei (CCN) activation of sea spray aerosol particles
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
Atmos. Chem. Phys., 25, 881–903, https://doi.org/10.5194/acp-25-881-2025,https://doi.org/10.5194/acp-25-881-2025, 2025
Short summary
Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Olivia G. Norman, Colette L. Heald, Solomon Bililign, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
Atmos. Chem. Phys., 25, 771–795, https://doi.org/10.5194/acp-25-771-2025,https://doi.org/10.5194/acp-25-771-2025, 2025
Short summary
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025,https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024,https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary

Cited articles

Aracri, E., Tzanov, T., and Vidal, T.: Use of Cyclic Voltammetry as an Effective Tool for Selecting Efficient Enhancers for Oxidative Bioprocesses: Importance of pH, Ind. Eng. Chem. Res., 52, 1455–1463, https://doi.org/10.1021/ie3027586, 2013. 
Arciva, S., Niedek, C., Mavis, C., Yoon, M., Sanchez, M. E., Zhang, Q., and Anastasio, C.: Aqueous OH Oxidation of Highly Substituted Phenols as a Source of Secondary Organic Aerosol, Environ. Sci. Technol., 56, 9959–9967, https://doi.org/10.1021/acs.est.2c02225, 2022. 
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev, 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986. 
Bai, F.-Y., Ni, S., Ren, Y., Tang, Y.-Z., Zhao, Z., and Pan, X.-M.: DFT analysis on the removal of dimethylbenzoquinones in atmosphere and water environments: OH-initiated oxidation and captured by (TiO2)n clusters (n= 1–6), J. Haz. Mat., 386, 121636, https://doi.org/10.1016/j.jhazmat.2019.121636, 2020. 
Banerjee, S., Gnanamani, E., Yan, X., and Zare, R. N.: Can all bulk-phase reactions be accelerated in microdroplets?, Analyst, 142, 1399–1402, https://doi.org/10.1039/C6AN02225A, 2017. 
Download
Short summary
This work found that the air–water (A–W) interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees compared with the gas phase and bulk water. Some byproducts are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in O3/HO + PhC experiments at the A–W interface and in mineral dust.
Altmetrics
Final-revised paper
Preprint