Articles | Volume 23, issue 12
https://doi.org/10.5194/acp-23-6989-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6989-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of an extreme solar event on the middle atmosphere: a case study
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Miriam Sinnhuber
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Jan Maik Wissing
Institute for Physics, University of Rostock, Rostock, Germany
Olesya Yakovchuk
Institute for Physics, University of Rostock, Rostock, Germany
Ilya Usoskin
Space Physics and Astronomy Research Unit and Sodankyla Geophysical Observatory, University of Oulu, Oulu, Finland
Related authors
Gholam Ali Hoshyaripour, Andreas Baer, Sascha Bierbauer, Julia Bruckert, Dominik Brunner, Jochen Foerstner, Arash Hamzehloo, Valentin Hanft, Corina Keller, Martina Klose, Pankaj Kumar, Patrick Ludwig, Enrico Metzner, Lisa Muth, Andreas Pauling, Nikolas Porz, Thomas Reddmann, Luca Reißig, Roland Ruhnke, Khompat Satitkovitchai, Axel Seifert, Miriam Sinnhuber, Michael Steiner, Stefan Versick, Heike Vogel, Michael Weimer, Sven Werchner, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2025-3400, https://doi.org/10.5194/egusphere-2025-3400, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper presents recent advances in ICON-ART, a modeling system that simulates atmospheric composition—such as gases and particles—and their interactions with weather and climate. By integrating updated chemistry, emissions, and aerosol processes, ICON-ART enables detailed, scale-spanning simulations. It supports both scientific research and operational forecasts, contributing to improved air quality and climate predictions.
Sarah Vervalcke, Quentin Errera, Simon Chabrillat, Marc Op de beeck, Thomas Reddmann, Gabriele Stiller, Roland Eichinger, and Emmanuel Mahieu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3597, https://doi.org/10.5194/egusphere-2025-3597, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents three simulations of atmospheric chemistry with the BASCOE model, driven by different meteorological data sets. These simulations include newly implemented SF6 chemistry, useful for stratospheric transport studies. Results compare well with satellite observations. The lifetime of six trace gases is computed and agrees with the literature, but SF6 shows larger sensitivity to the choice of meteorology. The lifetime of SF6 ranges from 1900 to 2600 years.
Maryam Ramezani Ziarani, Miriam Sinnhuber, Thomas Reddmann, Bernd Funke, Stefan Bender, and Michael Prather
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-227, https://doi.org/10.5194/gmd-2024-227, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Our study aims to present a new method for incorporating top-down solar forcing into stratospheric ozone relying on linearized ozone scheme. The addition of geomagnetic forcing led to significant ozone losses in the polar upper stratosphere of both hemispheres due to the catalytic cycles involving NOy. In addition to the particle precipitation effect, accounting for solar UV variability in the ICON-ART model leads to the changes in ozone in the tropical stratosphere.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Gholam Ali Hoshyaripour, Andreas Baer, Sascha Bierbauer, Julia Bruckert, Dominik Brunner, Jochen Foerstner, Arash Hamzehloo, Valentin Hanft, Corina Keller, Martina Klose, Pankaj Kumar, Patrick Ludwig, Enrico Metzner, Lisa Muth, Andreas Pauling, Nikolas Porz, Thomas Reddmann, Luca Reißig, Roland Ruhnke, Khompat Satitkovitchai, Axel Seifert, Miriam Sinnhuber, Michael Steiner, Stefan Versick, Heike Vogel, Michael Weimer, Sven Werchner, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2025-3400, https://doi.org/10.5194/egusphere-2025-3400, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper presents recent advances in ICON-ART, a modeling system that simulates atmospheric composition—such as gases and particles—and their interactions with weather and climate. By integrating updated chemistry, emissions, and aerosol processes, ICON-ART enables detailed, scale-spanning simulations. It supports both scientific research and operational forecasts, contributing to improved air quality and climate predictions.
Sarah Vervalcke, Quentin Errera, Simon Chabrillat, Marc Op de beeck, Thomas Reddmann, Gabriele Stiller, Roland Eichinger, and Emmanuel Mahieu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3597, https://doi.org/10.5194/egusphere-2025-3597, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents three simulations of atmospheric chemistry with the BASCOE model, driven by different meteorological data sets. These simulations include newly implemented SF6 chemistry, useful for stratospheric transport studies. Results compare well with satellite observations. The lifetime of six trace gases is computed and agrees with the literature, but SF6 shows larger sensitivity to the choice of meteorology. The lifetime of SF6 ranges from 1900 to 2600 years.
Jan Maik Wissing, Olesya Yakovchuk, Stefan Bender, and Christina Arras
EGUsphere, https://doi.org/10.5194/egusphere-2025-1256, https://doi.org/10.5194/egusphere-2025-1256, 2025
Short summary
Short summary
We investigate the subauroral flux maximum (at 60° North/South geomagetic) observed in low-energy particle channels. Two independent atmospheric impact measurements refute the subauroral flux under low Kp, pointing to instrumental crosstalk, likely from energetic electrons. We propose correction methods to mitigate contamination, ensuring accurate ionization estimates. Without correction, subauroral flux overestimates thermospheric ionization, underscoring the need for data refinement.
Maryam Ramezani Ziarani, Miriam Sinnhuber, Thomas Reddmann, Bernd Funke, Stefan Bender, and Michael Prather
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-227, https://doi.org/10.5194/gmd-2024-227, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Our study aims to present a new method for incorporating top-down solar forcing into stratospheric ozone relying on linearized ozone scheme. The addition of geomagnetic forcing led to significant ozone losses in the polar upper stratosphere of both hemispheres due to the catalytic cycles involving NOy. In addition to the particle precipitation effect, accounting for solar UV variability in the ICON-ART model leads to the changes in ozone in the tropical stratosphere.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Jan Maik Wissing and Olesya Yakovchuk
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-33, https://doi.org/10.5194/angeo-2023-33, 2023
Revised manuscript not accepted
Short summary
Short summary
We investigated a subauroral particle flux maximum (located at 60 N/S with focus at 0–100 E) seen in the NOAA POES detector, which we attributed to crosstalk contamination of radiation belt electrons. Affected are the processed TED proton channels (which should already be corrected by NOAA) and lower MEPED channels. The particle flux in the contaminated area can be more than factor 2 higher than typical auroral flux. The region of intense particle crosstalk may be removed by a latitudinal cut.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Gerald Wetzel, Michael Höpfner, Hermann Oelhaf, Felix Friedl-Vallon, Anne Kleinert, Guido Maucher, Miriam Sinnhuber, Janna Abalichin, Angelika Dehn, and Piera Raspollini
Atmos. Meas. Tech., 15, 6669–6704, https://doi.org/10.5194/amt-15-6669-2022, https://doi.org/10.5194/amt-15-6669-2022, 2022
Short summary
Short summary
Satellite measurements of stratospheric trace gases are essential for monitoring distributions and trends of these species on a global scale. Here, we compare the final MIPAS ESA Level 2 version 8 data (temperature and trace gases) with measurements obtained with the balloon version of MIPAS in terms of data agreement of both sensors, including combined errors. For most gases, we find a 5 % to 20 % agreement of the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Kseniia Golubenko, Eugene Rozanov, Gennady Kovaltsov, Ari-Pekka Leppänen, Timofei Sukhodolov, and Ilya Usoskin
Geosci. Model Dev., 14, 7605–7620, https://doi.org/10.5194/gmd-14-7605-2021, https://doi.org/10.5194/gmd-14-7605-2021, 2021
Short summary
Short summary
A new full 3-D time-dependent model, based on SOCOL-AERv2, of beryllium atmospheric production, transport, and deposition has been developed and validated using directly measured data. The model is recommended to be used in studies related to, e.g., atmospheric dynamical patterns, extreme solar particle storms, long-term solar activity reconstruction from cosmogenic proxy data, and solar–terrestrial relations.
Cited articles
Allaart, M., van Weele, M., Fortuin, P., and Kelder, H.: An empirical model to
predict the UV-index based on solar zenith angles and total ozone, Meteorol.
Appl., 11, 59–65, https://doi.org/10.1017/S1350482703001130, 2004. a
Aschwanden, M. J., Caspi, A., Cohen, C. M. S., Holman, G., Jing, J.,
Kretzschmar, M., Kontar, E. P., McTiernan, J. M., Mewaldt, R. A.,
O'Flannagain, A., Richardson, I. G., Ryan, D., Warren, H. P., and Xu, Y.:
Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal
Mass Ejections, Astrophys. J., 836, 17, https://doi.org/10.3847/1538-4357/836/1/17,
2017. a
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere, Springer, 3rd Edn., ISBN-10 1-4020-3284-6,
2005. a
Calisto, M., Usoskin, I., Rozanov, E., and Peter, T.: Influence of Galactic Cosmic Rays on atmospheric composition and dynamics, Atmos. Chem. Phys., 11, 4547–4556, https://doi.org/10.5194/acp-11-4547-2011, 2011.
a
Carrington, R. C.: Description of a Singular Appearance seen in the Sun on
September 1, 1859, Mon. Not. R. Astron. Soc., 20, 13–15, 1859. a
CIE International Commission on Illumination: ISO/CIE 17166:2019 Erythema
reference action spectrum and standard erythema dose, ISO, 2019. a
de Zafra, R. and Smyshlyaev, S.: On the formation of HNO3 in the Antarctic mid
to upper stratosphere in winter, J. Geophys. Res., 106,
23115–23125, 2001. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, https://doi.org/10.5194/acp-8-2151-2008, 2008. a
Funke, B., López-Puertas, M., Gil-López, S., von Clarmann, T., Stiller,
G. P., Fischer, H., and Kellmann, S.: Downward transport of upper atmospheric
NOx into the polar stratosphere and lower mesosphere during the Antarctic
2003 and Arctic 2002/2003 winters, J. Geophys. Res.-Atmos., 110, D24308, https://doi.org/10.1029/2005JD006463, 2005. a
Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., and Wissing, J. M.: Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys., 11, 9089–9139, https://doi.org/10.5194/acp-11-9089-2011, 2011. a, b, c
Funke, B., Lopez-Puertas, M., Holt, L., Randall, C. E., Stiller, G. P., and von
Clarmann, T.: Hemispheric distributions and interannual variability of NOy
produced by energetic particle precipitation in 2002–2012, J. Geophys. Res.-Atmos., 119, 13565–13582, https://doi.org/10.1002/2014JD022423, 2014. a
Funke, B., Ball, W., Bender, S., Gardini, A., Harvey, V. L., Lambert, A., López-Puertas, M., Marsh, D. R., Meraner, K., Nieder, H., Päivärinta, S.-M., Pérot, K., Randall, C. E., Reddmann, T., Rozanov, E., Schmidt, H., Seppälä, A., Sinnhuber, M., Sukhodolov, T., Stiller, G. P., Tsvetkova, N. D., Verronen, P. T., Versick, S., von Clarmann, T., Walker, K. A., and Yushkov, V.: HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009, Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, 2017. a, b, c, d
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl,
G. A., Shindell, D., van Geel, B., and White, W.: SOLAR INFLUENCES ON
CLIMATE, Rev. Geophys., 48, RG4001,
https://doi.org/10.1029/2009RG000282, 2010. a
Haenel, F. J., Stiller, G. P., von Clarmann, T., Funke, B., Eckert, E., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., and Reddmann, T.: Reassessment of MIPAS age of air trends and variability, Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, 2015. a
Holt, L. A., Randall, C. E., Peck, E. D., Marsh, D. R., Smith, A. K., and
Harvey, V. L.: The influence of major sudden stratospheric warming and
elevated stratopause events on the effects of energetic particle
precipitation in WACCM, J. Geophys. Res.-Atmos., 118,
11–636, 2013. a
Jong, L. M., Plummer, C. T., Roberts, J. L., Moy, A. D., Curran, M. A. J., Vance, T. R., Pedro, J. B., Long, C. A., Nation, M., Mayewski, P. A., and van Ommen, T. D.: 2000 years of annual ice core data from Law Dome, East Antarctica, Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, 2022. a
Kouker, W., Langbein, I., Reddmann, T., and Ruhnke, R.: The Karlsruhe
Simulation Model of The Middle Atmosphere Version 2, Wiss. Ber.
FZKA 6278, Forsch. Karlsruhe, Karlsruhe, Germany, 1999. a
Maliniemi, V., Asikainen, T., and Mursula, K.: Spatial distribution of Northern
Hemisphere winter temperatures during different phases of the solar cycle, J.
Geophys. Res.-Atmos., 119, 9752–9764, https://doi.org/10.1002/2013JD021343, 2014. a
Mekhaldi, F., Adolphi, F., Herbst, K. and Muscheler, R.: The Signal of Solar Storms Embedded in Cosmogenic Radionuclides: Detectability and Uncertainties, J. Geophys. Res.-Space, 126, e2021JA029351, https://doi.org/10.1029/2021JA029351, 2021. a
Melott, A. L., Thomas, B. C., Laird, C. M., Neuenswander, B., and Atri, D.:
Atmospheric ionization by high-fluence, hard-spectrum solar proton events and
their probable appearance in the ice core archive, J. Geophys. Res.-Atmos.,
121, 3017–3033, https://doi.org/10.1002/2015JD024064, cited By 16, 2016. a
Meredith, N. P., Horne, R. B., Isles, J. D., and Green, J. C.: Extreme
energetic electron fluxes in low Earth orbit: Analysis of POES E > 30, E > 100, and E > 300 keV electrons, Adv. Space Res., 14, 136–150,
https://doi.org/10.1002/2015SW001348, 2016. a, b, c, d
Nesse Tyssøy, H., Sinnhuber, M., Asikainen, T., Bender, S., Clilverd, M. A.,
Funke, B., van de Kamp, M., Pettit, J. M., Randall, C. E., Reddmann, T.,
Rodger, C. J., Rozanov, E., Smith-Johnsen, C., Sukhodolov, T., Verronen,
P. T., Wissing, J. M., and Yakovchuk, O.: HEPPA III Intercomparison
Experiment on Electron Precipitation Impacts: 1. Estimated Ionization Rates
During a Geomagnetic Active Period in April 2010, J. Geophys.
Res., 127, e2021JA029128,
https://doi.org/10.1029/2021JA029128, 2021. a
Nieder, H., Winkler, H., Marsh, D. R., and Sinnhuber, M.: NOx production due to
energetic particle precipitation in the MLT region: Results from ion
chemistry model studies, J. Geophys. Res., 119, 2137–2148, https://doi.org/10.1002/2013JA019044, 2014. a
Pettit, J., Randall, C. E., Marsh, D. R., Bardeen, C. G., Qian, L., Jackman,
C. H., Woods, T. N., Coster, A., and Harvey, V. L.: Effects of the September
2005 Solar Flares and Solar Proton Events on the Middle Atmosphere in WACCM,
J. Geophys. Res., 123, 5747–5763,
https://doi.org/10.1029/2018JA025294, 2018. a
Porter, H. S., Jackman, C. H., and Green, A. E. S.: Efficiencies for production
of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem.
Phys, 65, 154–167, https://doi.org/10.1063/1.432812, 1976. a
Reddmann, T.: Model results of solar extreme scenarios with the KASIMA model, RADAR4KIT [data set], https://doi.org/10.35097/1104, 2023. a
Reddmann, T., Ruhnke, R., Versick, S., and Kouker, W.: Modeling disturbed
stratospheric chemistry during solar-induced NOx enhancements observed with
MIPAS/ENVISAT, J. Geophys. Res., 115, D00111, https://doi.org/10.1029/2009JD012569,
2010. a
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and Rodger,
C. J.: Geomagnetic activity and polar surface air temperature variability, J.
Geophys. Res., 114, A10312, https://doi.org/10.1029/2008JA014029, 2009. a
Sinnhuber, M., Nieder, H., and Wieters, N.: Energetic Particle Precipitation
and the Chemistry of the Mesosphere/Lower Thermosphere, Surv. Geophys., 33,
1281–1334, https://doi.org/10.1007/s10712-012-9201-3, 2012. a
Sinnhuber, M., Berger, U., Funke, B., Nieder, H., Reddmann, T., Stiller, G., Versick, S., von Clarmann, T., and Wissing, J. M.: NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010, Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, 2018. a
Sinnhuber, M., Nesse Tyssoy, H., Asikainen, T., Bender, S., Funke, B.,
Hendrickx, K., Pettit, J. M., Reddmann, T., Rozanov, E., Schmidt, H.,
Smith-Johnsen, C., Sukhodolov, T., Szelag, M. E., van de Kamp, M., Verronen,
P. T., Wissing, J. M., and Yakovchuk, O. S.: Heppa III Intercomparison
Experiment on Electron Precipitation Impacts: 2. Model-Measurement
Intercomparison of Nitric Oxide (NO) During a Geomagnetic Storm in April
2010, J. Geophys. Res., 126, e2021JA029466, https://doi.org/10.1029/2021JA029466, 2021. a, b, c
Smart, D. F., Shea, M. A., Melott, A. L., and Laird, C. M.: Low time resolution
analysis of polar ice cores cannot detect impulsive nitrate events, J.
Geophys. Res., 119, 9430–9440, https://doi.org/10.1002/2014JA020378, 2014. a
Solomon, S., Rusch, D. W., Gérard, J.-C., Reid, G. C., and Crutzen, P. J.:
The effect of particle precipitation events on the neutral and ion chemistry
of the middle atmosphere: II. Odd hydrogen, Planet. Space Sci., 29, 885–893,
1981. a
Stiller, G. P., von Clarmann, T., Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., Kleinert, A., Linden, A., Milz, M., Reddmann, T., Steck, T., Fischer, H., Funke, B., López-Puertas, M., and Engel, A.: Global distribution of mean age of stratospheric air from MIPAS SF6 measurements, Atmos. Chem. Phys., 8, 677–695, https://doi.org/10.5194/acp-8-677-2008, 2008. a
Sukhodolov, T., Usoskin, I., Rozanov, E., Asvestari, E., Ball, W. T., Curran,
M. A. J., Fischer, H., Kovaltsov, G., Miyake, F., Peter, T., Plummer, C.,
Schmutz, W., Severi, M., and Traversi, R.: Atmospheric impacts of the
strongest known solar particle storm of 775 AD, Sci. Rep., 7, 45257,
https://doi.org/10.1038/srep45257, 2017. a, b, c, d, e, f, g
Usoskin, I., Koldobskiy, S., Kovaltsov, G. A., Gil, A., Usoskina, I., Willamo,
T., and Ibragimov, A.: Revised GLE database: Fluences of solar energetic
particles as measured by the neutron-monitor network since 1956, Astron.
Astrophys., 640, A17, https://doi.org/10.1051/0004-6361/202038272, 2020. a
Usoskin, I. G.: A history of solar activity over millennia, Living Rev. Sol.
Phys., 14, 3, https://doi.org/10.1007/s41116-017-0006-9, 2017. a, b
Usoskin, I. G., Kovaltsov, G. A., Mironova, I. A., Tylka, A. J., and Dietrich, W. F.: Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos. Chem. Phys., 11, 1979–1988, https://doi.org/10.5194/acp-11-1979-2011, 2011. a, b
Vasyliunas, V. M.: The largest imaginable magnetic storm, J. Atmos. Sol.-Terr. Phy., 73, 1444–1446, https://doi.org/10.1016/j.jastp.2010.05.012,
2011. a
Vitt, F. M. and Jackman, C. H.: A comparison of sources of odd nitrogen
production from 1974 through 1993 in the Earth's middle atmosphere as
calculated using a two-dimensional model, J. Geophys. Res.-Atmos., 101,
6729–6739, https://doi.org/10.1029/95JD03386, 1996. a
Weber, M., Arosio, C., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Wild, J. D., Tourpali, K., Burrows, J. P., and Loyola, D.: Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets, Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022, 2022. a
Wissing, J. M. and Kallenrode, M. B.: Atmospheric Ionization Module Osnabruck
(AIMOS): A 3-D model to determine atmospheric ionization by energetic charged
particles from different populations, J. Geophys. Res., 114, A06104,
https://doi.org/10.1029/2008JA013884, 2009. a
Short summary
Recent analyses of isotopic records of ice cores and sediments have shown that very strong explosions may occur on the Sun, perhaps about one such explosion every 1000 years. Such explosions pose a real threat to humankind. It is therefore of great interest to study the impact of such explosions on Earth. We analyzed how the explosions would affect the chemistry of the middle atmosphere and show that the related ozone loss is not dramatic and that the atmosphere will recover within 1 year.
Recent analyses of isotopic records of ice cores and sediments have shown that very strong...
Altmetrics
Final-revised paper
Preprint