Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-6383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Xinan Yue
CORRESPONDING AUTHOR
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Yihui Cai
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Zhipeng Ren
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Yongxin Pan
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Related authors
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Gang Chen, Yimeng Xu, Guotao Yang, Shaodong Zhang, Zhipeng Ren, Pengfei Hu, Tingting Yu, Fuju Wu, Lifang Du, Haoran Zheng, Xuewu Cheng, Faquan Li, and Min Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1888, https://doi.org/10.5194/egusphere-2025-1888, 2025
Short summary
Short summary
We usually believe that the impact of magnetic storms will not reach the mesosphere. However, in the storm on 4 Nov. 2021, the mesospheric metal layer depletion was recorded by three lidars for different metal components at mid-latitudes. The storm induced oxygen density enhancement is considered to consume more metal atoms in the metal layer. It implies that the effects of storm have reached mesosphere, and the influence of storm on metal layer is achieved through chemical processes.
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Mingzhe Li and Xinan Yue
Atmos. Meas. Tech., 14, 3003–3013, https://doi.org/10.5194/amt-14-3003-2021, https://doi.org/10.5194/amt-14-3003-2021, 2021
Short summary
Short summary
In this study, we statistically analyzed the correlation between the ionospheric irregularity and the quality of the GNSS atmospheric radio occultation (RO) products. The results show that the ionospheric irregularity could affect the GNSS atmospheric RO in terms of causing failed inverted RO events and the bending angle oscillation. Awareness of the ionospheric irregularity effect on RO could be beneficial to improve the RO data quality for weather and climate research.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Cited articles
Akmaev, R. A. and Fomichev, V. I.: A model estimate of cooling in the
mesosphere and lower thermosphere due to the CO2 Increase over the last 3–4 decades, Geophys. Res. Lett., 27, 2113–2116, https://doi.org/10.1029/1999GL011333, 2000.
Akmaev, R. A., Fomichev, V. I., and Zhu, X.: Impact of middle-atmospheric
composition changes on greenhouse cooling in the upper atmosphere, J. Atmos.
Sol.-Terr. Phy., 68, 1879–1889, https://doi.org/10.1016/j.jastp.2006.03.008, 2006.
Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A., Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D., Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M., Kuang, W., Kuvshinov, A., Langlais, B., Léger, J. M., Lesur, V., Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M., Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound, J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov, V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D., Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L., Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski, I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and Zhou, B.: International Geomagnetic Reference Field: the thirteenth generation, Earth Planets Space, 73, 49, https://doi.org/10.1186/s40623-020-01288-x, 2021.
Beagley, S. R., Boone, C. D., Fomichev, V. I., Jin, J. J., Semeniuk, K.,
McConnell, J. C., and Bernath, P. F.: First multi-year occultation
observations of CO2 in the MLT by ACE satellite: observations and analysis using the extended CMAM, Atmos. Chem. Phys., 10, 1133–1153,
https://doi.org/10.5194/acp-10-1133-2010, 2010.
Beig, G., Keckhut, P., Lowe, R. P., Roble, R. G., Mlynczak, M. G., Scheer, J., Fomichev, V. I., Offermann, D., French, W. J. R., Shepherd, M. G., Semenov, A. I., Remsberg, E. E., She, C. Y., Lübken, F. J., Bremer, J., Clemesha, B. R., Stegman, J., Sigernes, F., and Fadnavis S.: Review of mesospheric temperature trends, Rev. Geophys., 41, 1015, https://doi.org/10.1029/2002RG000121, 2003.
Cai, Y.: Simulated Long-term Evolution of the Thermosphere during the Holocene: 1. Neutral Density and Temperature, IGGCAS, [date set], https://doi.org/10.17605/OSF.IO/ZQ8HY, 2023.
Cai, Y., Yue, X., Wang, W., Zhang, S., Liu, L., Liu, H., and Wan, W.: Long-term trend of topside ionospheric electron density derived from DMSP data during 1995–2017, J. Geophys. Res.-Space, 124, 10708–10727, https://doi.org/10.1029/2019JA027522, 2019.
Cai, Y., Yue, X., Zhou, X., Ren, Z., Wei, Y., and Pan, Y.: Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature, Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, 2023.
Cnossen, I.: The importance of geomagnetic field changes versus rising CO2 levels for long-term change in the upper atmosphere, J. Space Weather Space Clim., 4, A18, https://doi.org/10.1051/swsc/2014016, 2014.
Cnossen, I.: A Realistic Projection of Climate Change in the Upper Atmosphere Into the 21st Century, Geophys. Res. Lett., 49, e2022GL100693,
https://doi.org/10.1029/2022gl100693, 2022.
Cnossen, I. and Maute, A.: Simulated Trends in Ionosphere-Thermosphere Climate Due to Predicted Main Magnetic Field Changes From 2015 to 2065, J.
Geophys. Res.-Space., 125, e2019JA027738, https://doi.org/10.1029/2019ja027738, 2020.
Cnossen, I. and Richmond, A. D.: How changes in the tilt angle of the
geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere
system, J. Geophys. Res.-Atmos., 117, A10317, https://doi.org/10.1029/2012JA018056, 2012.
Cnossen, I., Richmond, A. D., and Wiltberger, M.: The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth's magnetic
dipole moment, J. Geophys. Res.-Space, 117, A05302, https://doi.org/10.1029/2012JA017555, 2012.
Constable, C., Korte, M., and Panovska, S.: Persistent high paleosecular
variation activity in southern hemisphere for at least 10 000 years, Earth
Planet. Sc. Lett., 453, 78-86, https://doi.org/10.1016/j.epsl.2016.08.015, 2016.
EarthRef: EarthRef.org Digital Archive (ERDA), EarthRef [data set], https://earthref.org/ERDA/2207 (last access: 26 April 2023), 2023.
Elias, A. G., de Haro Barbas, B. F., Zossi, B. S., Medina, F. D., Fagre, M.,
and Venchiarutti, J. V.: Review of long-term trends in the equatorial
ionosphere due the geomagnetic field secular variations and its relevance to
space weather, Atmosphere, 13, 40, https://doi.org/10.3390/atmos13010040, 2022.
Forbes, J. M.: Dynamics of the thermosphere, J. Meteorol. Soc. Jpn., 85, 193–213, https://doi.org/10.2151/jmsj.85B.193, 2007.
Forbes, J. M. and Zhang, X.: Hough Mode Extensions (HMEs) and solar tide
behavior in the dissipative thermosphere, J. Geophys. Res.-Space, 127, e2022JA030962, https://doi.org/10.1029/2022JA030962, 2022.
Gu, H. and Du, J.: On the Roles of Advection and Solar Heating in Seasonal
Variation of the Migrating Diurnal Tide in the Stratosphere, Mesosphere, and
Lower Thermosphere, Atmosphere, 9, 440, https://doi.org/10.3390/atmos9110440, 2018.
Huang, F. T., Mayr, H. G., Russell III, J. M., and Mlynczak, M. G.: Ozone
and temperature decadal trends in the stratosphere, mesosphere and lower
thermosphere, based on measurements from SABER on TIMED, Ann. Geophys., 32,
935–949, https://doi.org/10.5194/angeo-32-935-2014, 2014.
IPCC: Climate Change 2014: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., ISBN 978-92-9169-143-2, 2014.
Jiang, J., Wan, W., Ren, Z., and Yue, X.: Asymmetric de3 causes wn3 in the
ionosphere, J. Atmos. Sol.-Terr. Phy., 173, 14–22, https://doi.org/10.1016/j.jastp.2018.04.006, 2018.
Jin, H., Miyoshi, Y., Fujiwara, H., Shinagawa, H., Terada, K., Terada, N., Ishii, M., Otsuka, Y., and Saito, A.: Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth's whole atmosphere-ionosphere coupled model, J. Geophys. Res., 116, A01316, https://doi.org/10.1029/2010JA015925, 2011.
Keeling, C. D., Whorf, T. P., Wahlen, M., and vander Plicht, J. : Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 375, 666–670, https://doi.org/10.1038/375666a0, 1995.
Kogure, M., Liu, H., and Tao, C.: Mechanisms for zonal mean wind responses
in the thermosphere to doubled CO2 concentration, J. Geophys. Res.-Space, 127, e2022JA030643, https://doi.org/10.1029/2022JA030643, 2022.
Korte, M., Constable, C., Donadini, F., and Holme, R.: Reconstructing the
Holocene geomagnetic field, Earth Planet. Sc. Lett., 312, 497–505, https://doi.org/10.1016/j.epsl.2011.10.031, 2011.
Laštovička, J., R. Akmaev, A., Beig, G., Bremer, J., and Emmert J. T.: Global change in the upper atmosphere, Science, 314, 1253–1254,
https://doi.org/10.1126/science.1135134, 2006.
Laštovička, J.: A review of recent progress in trends in the upper
atmosphere, J. Atmos. Sol.-Terr. Phy., 163, 2–13, https://doi.org/10.1016/j.jastp.2017.03.009, 2017.
Liu, H., Tao, C., Jin, H., and Nakamoto, Y.: Circulation and tides in a
cooler upper atmosphere: Dynamical effects of CO2 doubling, Geophys. Res. Lett., 47, e2020GL087413, https://doi.org/10.1029/2020GL087413, 2020.
Liu, H., Tao, C., Jin, H., and Abe, T.: Geomagnetic activity effect on
CO2-driven trend in the thermosphere and ionosphere: Ideal model experiments with GAIA, J. Geophys. Res.-Space, 126, e2020JA028607,
https://doi.org/10.1029/2020JA028607, 2021.
Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Vitt, F. M., and Wang W.: Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0), J. Adv. Model. Earth Syst., 10, 381–402, https://doi.org/10.1002/2017MS001232, 2018.
Lübken, F.-J., Berger, U., and Baumgartner, G.: Temperature trends in
the midlatitude summer mesosphere. J. Geophys. Res.-Atmos., 118, 13347–13360, https://doi.org/10.1002/2013JD020576, 2013.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration record 650,000–800,000 yr before present, Nature, 453, 379–382, https://doi.org/10.1038/nature06949, 2008.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen, T, Smith, A., and Elkins, J.: Law Dome CO2, CH4, and N2O ice core records extended to 2,000 yr BP, Geophys. Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and
Polvani, L. M.: Climate change from 1850 to 2005 simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
NOAA: International Geomagnetic Reference Field, NOAA [data set], https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html (last access: 26 April 2023), 2019a.
NOAA: NOAA/WDS Paleoclimatology – AICC2012 800 KYr Antarctic Ice Core Chronology, NOAA [data set],
https://data.noaa.gov/dataset/dataset/noaa-wds-paleoclimatology-aicc2012-800kyr-antarctic-ice-core- (last access: 26 April 2023), 2019b.
NOAA: NOAA/WDS Paleoclimatology – Law Dome Ice Core 2000-Year CO2, CH4, and N2O Data, NOAA [data set], https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=noaa-icecore-9959 (last access: 26 April 2023), 2022.
NOAA: Trends in Atmospheric Carbon Dioxide, NOAA [data set], https://gml.noaa.gov/ccgg/trends/data.html (last access: 26 April 2023), 2023.
Oberheide, J., Forbes, J. M., Häusler, K., Wu, Q., and Bruinsma, S. L.:
Tropospheric tides from 80 to 400 km: Propagation, interannual variability,
and solar cycle effects, J. Geophys. Res.-Atmos., 114, D00I05,
https://doi.org/10.1029/2009JD012388, 2009.
Ogawa, Y., Motoba, T., Buchert, S. C., Häggström, I., and Nozawa, S.: Upper atmosphere cooling over the past 33 yr, Geophys. Res. Lett., 41,
5629–5635, https://doi.org/10.1002/2014GL060591, 2014.
Qian, L., Roble, R. G., Solomon, S. C., and Kane, T. J.: Calculated and
observed climate change in the thermosphere, and a prediction for solar
cycle 24, Geophys. Res. Lett., 33, L23705, https://doi.org/10.1029/2006gl027185, 2006.
Qian, L., Laštovička, J., Roble, R. G., and Solomon, S. C.: Progress
in observations and simulations of global change in the upper atmosphere, J.
Geophys. Res.-Space, 116, A00H03, https://doi.org/10.1029/2010JA016317, 2011.
Qian, L., Burns, A. G., Solomon, S. C., and Wang, W. B.: Carbon dioxide trends in the mesosphere and lower thermosphere, J. Geophys. Res., 122,
4474–4488, https://doi.org/10.1002/2016JA023825, 2017.
Qian, L., McInerney, J. M., Solomon, S. S., Liu, H., and Burns, A. G.: Climate changes in the upper atmosphere: Contributions by the changing greenhouse gas concentrations and Earth's magnetic field from the 1960s to
2010s, J. Geophys. Res.-Space, 126(3), e2020JA029067, https://doi.org/10.1029/2020JA029067, 2021.
Ren, Z., Wan, W., and Liu, L.: GCITEM-IGGCAS: A new global coupled ionosphere–thermosphere-electrodynamics model, J. Atmos. Sol.-Terr. Phy., 71, 2064–2076, https://doi.org/10.1016/j.jastp.2009.09.015, 2009.
Ren, Z., Wan, W., Xiong, J., and Liu, L.: Simulated wave number 4 structure
in equatorial F-region vertical plasma drifts, J. Geophys. Res.-Space, 115, A05301, https://doi.org/10.1029/2009ja014746, 2010.
Ren, Z., Wan, W., Liu, L., and Xiong, J.: Simulated longitudinal variations
in the lower thermospheric nitric oxide induced by nonmigrating tides, J.
Geophys. Res.-Space, 116, A04301, https://doi.org/10.1029/2010ja016131, 2011.
Ren, Z., Wan, W., Xiong, J., and Li, X.: A Simulation of the Influence of
DE3 Tide on Nitric Oxide Infrared Cooling, J. Geophys. Res.-Space, 125, e2019JA027131, https://doi.org/10.1029/2019ja027131, 2020.
Rezac, L., Jian, Y., Yue, J., Russell ?, J. M., Kutepov, A., Garcia, R., Walker, K., and Bernath, P.: Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER, J. Geophys. Res., 120, 12067–12081, https://doi.org/10.1002/2015JD023955, 2015.
Richards, P. G., Fennelly, J. A., and Torr, D. G.: EUVAC: A solar EUV Flux Model for aeronomic calculations, J. Geophys. Res., 99, 8981–8992, https://doi.org/10.1029/94JA00518, 1994.
Richmond, A. D.: Ionospheric Electrodynamics Using Magnetic Apex Coordinates, J. Geomagn. Geoelectr., 47, 191–212, https://doi.org/10.5636/jgg.47.191, 1995.
Rind, D., Suozzo, R., Balachandran, N. K., and Prather, M. J.: Climate
change and the middle atmosphere Part I: The doubled CO2 climate, J. Atmos. Sci., 47, 475–494, https://doi.org/10.1175/1520-0442(1998)011<0876:CCATMA>2.0.CO;2, 1990.
Roble, R. G. and Dickinson, R. E.: How will changes in carbon dioxide and
methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441–1444, https://doi.org/10.1029/GL016i012p01441, 1989.
Roble, R. G., Ridley, E. C., Richmond, A. D., and Dickinson, R. E.: A
coupled thermosphere/ionosphere general circulation model, Geophys. Res.
Lett., 15, 1325–1328, https://doi.org/10.1029/gl015i012p01325, 1988.
Solomon, S. C., Qian, L., and Roble, R. G.: New 3-D simulations of climate
change in the thermosphere, J. Geophys. Res.-Space, 120, 2183–2193, https://doi.org/10.1002/2014ja020886, 2015.
Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L., and
Vitt, F. M.: Whole Atmosphere Simulation of Anthropogenic Climate Change,
Geophys. Res. Lett., 45, 1567–1576, https://doi.org/10.1002/2017GL076950, 2018.
Sun, R., Gu, S., Dou, X., and Li, N.: Tidal Structures in the Mesosphere and
Lower Thermosphere and Their Solar Cycle Variations, Atmosphere, 13, 2036, https://doi.org/10.3390/atmos13122036, 2022.
Vogt, J., Sinnhuber, M., and Kallenrode, M. B.: Effects of Geomagnetic Variations on System Earth, in: Geomagnetic Field Variations, Advances in Geophysical and Environmental Mechanics and Mathematics, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-76939-2_5, 2009.
Weimer, D. R.: A flexible, IMF dependent model of high-latitude electric
potentials having “space weather” applications, Geophys. Res. Lett., 23, 2549–2552, https://doi.org/10.1029/96GL02255, 1996.
Yue, J., Wang, W., Richmond, A. D., Liu, H.-L., and Chang, L. C.: Wavenumber
broadening of the quasi 2 day planetary wave in the ionosphere, J. Geophys.
Res.-Space, 118, 3515–3526, https://doi.org/10.1002/jgra.50307, 2013.
Yue, X., Hu, L., Wei, Y., Wan, W., and Ning, B.: Ionospheric trend over Wuhan during 1947–2017: Comparison between simulation and observation, J. Geophys. Res.-Space, 123, 1396–1409, https://doi.org/10.1002/2017JA024675, 2018.
Yue, X., Cai, Y., Ren, Z., Zhou, X., Wei, Y., and Pan, Y.: Simulated Long-Term Evolution of the Ionosphere During the Holocene, J. Geophys. Res.-Space, 127, e2022JA031042, https://doi.org/10.1029/2022ja031042, 2022.
Zhang, R., Liu, L., Liu, H., Le, H., Chen, Y., and Zhang, H.: Interhemispheric transport of the ionospheric F region plasma during the 2009 sudden stratosphere warming, Geophys. Res. Lett., 47, e2020GL087078,
https://doi.org/10.1029/2020GL087078, 2020.
Zhang, S.-R., Holt, J. M., Erickson, P. J., Goncharenko, L. P., Nicolls, M.
J., McCready, M., and Kelly, J.: Ionospheric ion temperature climate and
upper atmospheric long-term cooling, J. Geophys. Res.-Space, 121, 8951–8968, https://doi.org/10.1002/2016JA022971, 2016.
Zhong, J., Wan, W. X., Wei, Y., Fu, S. Y., Jiao, W. X., Rong, Z. J., Chai, L. H., and Han, X. H.: Increasing exposure of geosynchronous orbit in solar wind due to decay of Earth's dipole field, J. Geophys. Res.-Space, 119, 9816–9822, https://doi.org/10.1002/2014JA020549, 2014.
Zhou, X., Yue, X. A., Liu, H. L., Wei, Y., and Pan, Y. X.: Response of
atmospheric carbon dioxide to the secular variation of weakening geomagnetic
field in whole atmosphere simulations, Earth Planet. Phys., 5, 327–336, https://doi.org/10.26464/epp2021040, 2021.
Zhou, X., Yue, X., Ren, Z., Liu, Y., Cai, Y., Ding, F., and Wei, Y.: Impact
of Anthropogenic Emission Changes on the Occurrence of Equatorial Plasma
Bubbles, Geophys. Res. Lett., 49, e2021GL09735, https://doi.org/10.1029/2021gl097354, 2022.
Zossi, B. S., Elias, A. G., and Fagre, M.: Ionospheric conductance spatial
distribution during geomagnetic field reversals, J. Geophys. Res., 123,
2379–2397, https://doi.org/10.1002/2017JA024925, 2018.
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the...
Special issue
Altmetrics
Final-revised paper
Preprint