Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6383-2023
https://doi.org/10.5194/acp-23-6383-2023
Research article
 | 
12 Jun 2023
Research article |  | 12 Jun 2023

Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides

Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan

Data sets

EarthRef.org Digital Archive (ERDA) EarthRef https://earthref.org/ERDA/2207

International Geomagnetic Reference Field NOAA https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

NOAA/WDS Paleoclimatology - Law Dome Ice Core 2000-Year CO2, CH4, and N2O Data NOAA https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=noaa-icecore-9959

Trends in Atmospheric Carbon Dioxide NOAA https://gml.noaa.gov/ccgg/trends/data.html

Simulated Long-term Evolution of the Thermosphere during the Holocene: 1. Neutral Density and Temperature Y. Cai https://doi.org/10.17605/OSF.IO/ZQ8HY

NOAA/WDS Paleoclimatology - AICC2012 800KYr Antarctic Ice Core Chronology NOAA https://data.noaa.gov/dataset/dataset/noaa-wds-paleoclimatology-aicc2012-800kyr-antarctic-ice-core-chronology

Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Altmetrics
Final-revised paper
Preprint